K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 12 2020

\(x^2+y^2=1+xy\Rightarrow x^2+y^2-xy=1\)

Ta có: \(1+xy=x^2+y^2\ge2xy\Rightarrow xy\le1\)

\(1+xy=x^2+y^2\ge-2xy\Rightarrow xy\ge-\dfrac{1}{3}\)

\(P=\left(x^2+y^2\right)^2-x^2y^2-2x^2y^2=\left(x^2+y^2-xy\right)\left(x^2+y^2+xy\right)-2x^2y^2\)

\(=x^2+y^2+xy-2x^2y^2=-2x^2y^2+2xy+1\)

Đặt \(a=xy\Rightarrow P=f\left(a\right)=-2a^2+2a+1\)

Xét hàm \(f\left(a\right)=-2a^2+2a+1\) trên \(\left[-\dfrac{1}{3};1\right]\)

\(-\dfrac{b}{2a}=\dfrac{1}{2}\in\left[-\dfrac{1}{3};1\right]\)

\(f\left(-\dfrac{1}{3}\right)=\dfrac{1}{9}\) ; \(f\left(\dfrac{1}{2}\right)=\dfrac{3}{2}\) ; \(f\left(1\right)=1\)

\(\Rightarrow M=\dfrac{3}{2}\) ; \(m=\dfrac{1}{9}\) \(\Rightarrow Mm=\dfrac{1}{6}\)

15 tháng 5 2017

x1y1 = x2y2 = x3y3 = x4y4 = 60

1 tháng 2 2020

a) (x-y)(x4+x3y+x2y2+xy3+y4) = x(x4+x3y+x2y2+xy3+y4)-y(x4+x3y+x2y2+xy3+y4) =(x5+x4y+x3y2+x2y2+xy4)-(x4y+x3y2+x2y2+xy4+y5) = x5+x4y+x3y2+x2y2+xy4-x4y-x3y2-x2y2-xy4-y5 =x5-y5⇒Điều cần chứng minh

Các câu b d tương tự

2 tháng 2 2020

cảm ơn bạn nhiều

19 tháng 1 2019

Thay tại x = 1 và y = -1 vào đa thức, ta có:

12.(-1)2 + 14.(-1)4 + 16.(-1)6 = 1.1 + 1.1 + 1.1 = 3

HQ
Hà Quang Minh
Giáo viên
16 tháng 9 2023

a) Hệ số tỉ lệ a = x1.y1 = 20. 9 =180

b) Ta có: y= \(\frac{{180}}{x}\)

Khi x2 = 18 thì y2 = \(\frac{{180}}{{{x_2}}} = \frac{{180}}{{18}} = 10\)

Khi x3 = 15 thì y3 = \(\frac{{180}}{{{x_3}}} = \frac{{180}}{{15}} = 12\)

Khi x4 = 18 thì y4 = \(\frac{{180}}{{{x_4}}} = \frac{{180}}{5} = 36\)

c) Tích x1.y1 = 20. 9 =180

x2.y2 = 18.10 =180

x3.y3 = 15.12 =180

x4.y4 = 5.36 =180

Vậy x1y1 = x2y2 = x3y3 = x4y4 =180

d) Ta có:

\(\frac{{{x_1}}}{{{x_2}}}\) = \(\frac{{20}}{{18}}\)=\(\frac{{10}}{9}\) ; \(\frac{{{y_2}}}{{{y_1}}}\)= \(\frac{{10}}{9}\)

\(\frac{{{x_1}}}{{{x_3}}}\) = \(\frac{{20}}{{15}}\)=\(\frac{4}{3}\) ; \(\frac{{{y_3}}}{{{y_1}}}\) = \(\frac{{12}}{9}\) = \(\frac{4}{3}\)

\(\frac{{{x_3}}}{{{x_4}}}\) = \(\frac{{15}}{5}\) = 3; \(\frac{{{y_4}}}{{{y_3}}}\)= \(\frac{{36}}{{12}}\) = 3

Vậy \(\frac{{{x_1}}}{{{x_2}}}\) = \(\frac{{{y_2}}}{{{y_1}}}\); \(\frac{{{x_1}}}{{{x_3}}}\)= \(\frac{{{y_3}}}{{{y_1}}}\); \(\frac{{{x_3}}}{{{x_4}}}\) = \(\frac{{{y_4}}}{{{y_3}}}\)

8 tháng 11 2021

\(\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)=x^5-y^5\)

Ta có VT:

 \(\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)\)

\(=x.x^4+x.x^3y+x.x^2y^2+x.xy^3+x.y^4-y.x^4-y.x^3y-y.x^2y^2-y.xy^3-y.y^4\)

\(=x^5+x^4y+x^3y^2+x^2y^3+xy^4-x^4y-x^3y^2-x^2y^3-xy^4-y^5\)

\(=x^5-y^5\)

VT=VP
Vậy:...

AH
Akai Haruma
Giáo viên
7 tháng 10 2023

Lời giải:
Với $x=3, y=\frac{1}{3}$ thì $xy=3.\frac{1}{3}=1$
Khi đó:

$A=xy+(xy)^2+(xy)^4+...+(xy)^{2022}=1+1^2+1^4+...+1^{2022}$

$=\underbrace{1+1+....+1}_{1012}=1012.1=1012$
b. Đề thiếu dữ kiện về $x,y$

16 tháng 9 2018

Cách 1 : Gọi B = xy – x2y2 + x4y4 – x6y6 + x8y8

Thay x = –1 ; y = –1 vào biểu thức.

B = (–1).(–1) – (–1)2.(–1)2+ (–1)4.(–1)4 – (–1)6.(–1)6 + (–1)8.(–1)8

= + 1 – 1.1 + 1.1 – 1.1+ 1.1

= 1 – 1 + 1 – 1 + 1

= 1

Cách 2: Khi x = -1, y = -1 thì x.y = (-1).(-1) = 1.

Có : B = xy – x2y2 + x4y4 – x6y6 + x8y8 = xy – (xy)2 + (xy)4 – (xy)6 + (xy)8 = 1 - 1 + 1 - 1 + 1 = 1

21 tháng 5 2018

Thực hiện phép nhân đa thức với đa thức ở vế trái

=> VT = VP (đpcm)

25 tháng 11 2017

a) Theo tỉ lệ nghịch ta có \(y=\frac{a}{x}\) => a = x.y = x1.y1 = 2.30 = 60

b) 

xx1=30x2=3x3=4x4=5
yy1=30y2=20y3=15y4=12

c) x1.y1=x2.y2=x3.y3=x4.y4

25 tháng 11 2017

a, a = 60

b, y2 = 20 ; y3 = 15 ; y4 = 12

c, x1.y1 = x2.y2 = x3.y3 = x4.y4 = a