Tìm nghiệm nguyên 5x2 +y2 =17+2xy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
viết lại pt dưới dạng
\(x^2-2x\left(y+2\right)+\left(2y^2+8\right)=0.\)
\(\Delta`x=\left(y+2\right)^2-\left(2y^2+8\right)=0\)
\(\Delta`=y^2+4y+4-2y^2-8=-y^2+4y-4=0\)
\(\Delta`=-\left(y-2\right)^2=0\Leftrightarrow y=2\)
thay y=2
\(x^2-4x+8-4x=-8\)
\(x^2-8x+16=0\)
\(\left(x-4\right)^2=0\Leftrightarrow x=4\)
\(x^2-2xy+2y^2-4x=-8\)
\(\Leftrightarrow x^2-2xy+2y^2-4x+8=0\)
\(\Leftrightarrow2x^2-4xy+4y^2-8x+16=0\)
\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(x^2-8x+16\right)=0\)
\(\Leftrightarrow\left(x-2y\right)^2+\left(x-4\right)^2=0\)
Ta có: \(\left(x-2y\right)^2+\left(x-4\right)^2\ge0\) \(\forall x;y\)
Dấu "=" xảy ra: \(\Leftrightarrow\hept{\begin{cases}x-2y=0\\x-4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2y\\x=4\end{cases}\Leftrightarrow\hept{\begin{cases}y=2\\x=4\end{cases}}}\) (thỏa mãn)
Vậy x = 4 và y = 2
Bài bạn gửi hay đấy .Chúc bạn học tốt.
Rút gọn đa thức M ta có :
M = x2 – 2xy + 5x2 – 1 = (x2+ 5x2) – 2xy – 1 = 6x2 – 2xy – 1
Sau khi rút gọn, M có các hạng tử là:
6x2 có bậc 2
– 2xy có bậc 2
– 1 có bậc 0
Bậc của đa thức là bậc của hạng tử có bậc cao nhất
⇒ Đa thức M = x2 – 2xy + 5x2 – 1 có bậc 2.
N = x2y2 – y2 + 5x2 – 3x2y + 5 có các hạng tử là
x2y2 có bậc 4 (vì biến x có bậc 2, biến y có bậc 2, tổng là 2 + 2 = 4)
– y2 có bậc 2
5x2 có bậc 2
– 3x2y có bậc 3 (vì biến x có bậc 2, biến y có bậc 1, tổng là 2 + 1 = 3)
5 có bậc 0
Bậc của đa thức là bậc của hạng tử có bậc cao nhất.
⇒ Đa thức N = x2y2 – y2 + 5x2 – 3x2y + 5 có bậc 4
Ta có:
M + 5 x 2 − 2 x y = 6 x 2 + 10 x y − y 2 ⇒ M = 6 x 2 + 10 x y − y 2 − 5 x 2 − 2 x y ⇒ M = 6 x 2 + 10 x y − y 2 − 5 x 2 + 2 x y ⇒ M = 6 x 2 − 5 x 2 + ( 10 x y + 2 x y ) − y 2 ⇒ M = x 2 + 12 x y − y 2
Chọn đáp án A
\(a,P=\left(5x^2-2xy+y^2\right)-\left(x^2+y^2\right)-\left(4x^2-5xy+1\right)\\ =5x^2-2xy+y^2-x^2-y^2-4x^2+5xy-1\\ =\left(5x^2-x^2-4x^2\right)+\left(y^2-y^2\right)+\left(-2xy+5xy\right)-1\\ =3xy-1\)
\(x+y=6,2\\ \Rightarrow y=6,2-1,2=5\)
Thay \(x=1,2;y=5\)
\(\Rightarrow3.5.1,2-1=17\)
`P = 5x^2 - x^2 - 4x^2 - 2xy + 5xy + y^2 - y^2 - 1`
`= 3xy - 1`
Thay `x = 1,2; y = 6,2 - 1,2 = 5` vào
`3 xx 1,2 xx 5-1 = 18 - 1 = 17`