K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2017

a) A = 4 + 42 + 43 + 44 + 45 + 46

A = ( 4 + 42 ) + ( 43 + 44 ) + ( 45 + 46 )

A = 4 . ( 1 + 4 ) + 43 . ( 1 + 4 ) + 45 . ( 1 + 4 )

A = 4 . 5 + 43 . 5 + 45 . 5

A = ( 4 + 43 + 45 ) . 5 \(⋮\)

b) tương tự

a: \(3\sqrt{200}=3\cdot10\sqrt{2}=30\sqrt{2}\)

b: \(-5\sqrt{50a^2b^2}=-5\cdot5\sqrt{2a^2b^2}\)

\(=-25\cdot\left|ab\right|\cdot\sqrt{5}\)

c: \(-\sqrt{75a^2b^3}\)

\(=-\sqrt{25a^2b^2\cdot3b}=-5\left|ab\right|\cdot\sqrt{3b}\)

30 tháng 5 2022

Câu này đề hỏi gì vậy em?

 

30 tháng 5 2022

là rút gọn biểu thức ạ 

14 tháng 10 2023

a) \(12\cdot\left(-\dfrac{2}{3}\right)^2+\dfrac{4}{3}\)

\(=12\cdot\dfrac{4}{9}+\dfrac{4}{3}\)

\(=\dfrac{12\cdot4}{9}+\dfrac{4}{3}\)

\(=\dfrac{16}{3}+\dfrac{4}{3}\)

\(=\dfrac{16+4}{3}\)

\(=\dfrac{20}{3}\)

b) \(\left(\dfrac{3}{2}\right)^2-\left[0,5:2-\sqrt{81}\cdot\left(-\dfrac{1}{2}\right)^2\right]\)

\(=\dfrac{9}{4}-\left(\dfrac{1}{2}:2-9\cdot\dfrac{1}{4}\right)\)

\(=\dfrac{9}{4}-\left(\dfrac{1}{4}-9\cdot\dfrac{1}{4}\right)\)

\(=\dfrac{9}{4}-\dfrac{1}{4}\cdot\left(1-9\right)\)

\(=\dfrac{9}{4}+\dfrac{8}{4}\)

\(=\dfrac{17}{4}\) 

c) \(\left(-\dfrac{3}{4}+\dfrac{2}{3}\right):\dfrac{5}{11}+\left(-\dfrac{1}{4}+\dfrac{1}{3}\right)\)

\(=-\dfrac{1}{12}:\dfrac{5}{11}+\dfrac{1}{12}\)

\(=\dfrac{1}{12}\cdot-\dfrac{11}{5}+\dfrac{1}{12}\)

\(=\dfrac{1}{12}\cdot\left(-\dfrac{11}{5}+1\right)\)

\(=\dfrac{1}{12}\cdot-\dfrac{6}{5}\)

\(=-\dfrac{1}{10}\) 

d) \(\dfrac{\left(-1\right)^3}{15}+\left(-\dfrac{2}{3}\right)^2:2\dfrac{2}{3}-\left|-\dfrac{5}{6}\right|\)

\(=-\dfrac{1}{15}+\dfrac{4}{9}:\left(2+\dfrac{2}{3}\right)-\dfrac{5}{6}\)

\(=-\dfrac{1}{15}+\dfrac{4}{9}:\dfrac{8}{3}-\dfrac{5}{6}\)

\(=-\dfrac{9}{10}+\dfrac{1}{6}\)

\(=-\dfrac{11}{15}\) 

e) \(\dfrac{3^7\cdot8^6}{6^6\cdot\left(-2\right)^{12}}\)

\(=\dfrac{3^7\cdot\left(2^3\right)^6}{2^6\cdot3^6\cdot2^{12}}\)

\(=\dfrac{3^7\cdot2^{18}}{2^{6+12}\cdot3^6}\)

\(=\dfrac{2^{18}\cdot3^7}{2^{18}\cdot3^6}\)

\(=3^{7-6}\)

\(=3\)

14 tháng 10 2023

\(a,12\cdot\left(-\dfrac{2}{3}\right)^2+\dfrac{4}{3}\\ =12\cdot\dfrac{4}{9}+\dfrac{4}{3}\\ =\dfrac{16}{3}+\dfrac{4}{3}\\ =\dfrac{20}{3}\\ b,\left(\dfrac{3}{2}\right)^2-\left[0,5:2-\sqrt{81}.\left(-\dfrac{1}{2}\right)^2\right]\\ =\dfrac{9}{4}-\left(\dfrac{1}{2}\cdot\dfrac{1}{2}-9\cdot\dfrac{1}{4}\right)\\ =\dfrac{9}{4}-\left(\dfrac{1}{4}-\dfrac{9}{4}\right)\\ =\dfrac{9}{4}-\left(-\dfrac{8}{4}\right)\\ =\dfrac{17}{4}\)

\(c,\left(-\dfrac{3}{4}+\dfrac{2}{3}\right):\dfrac{5}{11}+\left(-\dfrac{1}{4}+\dfrac{1}{3}\right)\\ =\left(-\dfrac{9}{12}+\dfrac{8}{12}\right)\cdot\dfrac{11}{5}+\left(-\dfrac{3}{12}+\dfrac{4}{12}\right)\\ =-\dfrac{1}{12}\cdot\dfrac{11}{5}+\dfrac{1}{12}\\ =-\dfrac{11}{60}+\dfrac{1}{12}\\ =-\dfrac{1}{10}\)

\(d,\dfrac{-1^3}{15}+\left(-\dfrac{2}{3}\right)^2:2\dfrac{2}{3}-\left(-\dfrac{5}{6}\right)\\ =-\dfrac{1}{15}+\dfrac{4}{9}\cdot\dfrac{3}{8}+\dfrac{5}{6}\\ =-\dfrac{1}{15}+\dfrac{1}{6}+\dfrac{5}{6}\\ =\dfrac{1}{10}+\dfrac{5}{6}\\ =\dfrac{14}{15}\)

`e,` Không hiểu đề á c: )

14 tháng 6 2021

Trả lời:

a, Ta có: 320 ; 274 = ( 33 )4 = 312

Vì 320 > 312 nên 320 > 274

b, 225 ; 166 = ( 24 )= 224

Vì 225 > 224 nên 225 > 166 

14 tháng 6 2021

Trả lời:

c, 1030 = ( 103 )10  = 100010 ; 450 = ( 45 )10 = 102410

Vì 100010 < 102410 nên 1030 < 450

d, 534 ; 25.530 = 52 . 530 = 532

Vì 534 > 532 nên 534 > 25.530

9 tháng 9 2017

*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)

              \(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)

              \(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)

              \(=6\times\left(2^2+2^3+...+2^{2008}\right)\)

              \(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)

               \(\Rightarrow A⋮3\)

*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)

               \(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)

               \(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)

               \(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)

                \(\Rightarrow A⋮7\)

Mình sửa lại đề C 1 chút xíu

*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)

               \(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)

               \(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)

                \(\Rightarrow C⋮4\)

Các câu khác làm tương tự nhé. Chúc bạn học tốt!

10 tháng 12 2017

Thanks bạn

4 tháng 12 2017

21+22+23+......+210

⇒2.(1+2)+22.(1+2)+......+29.(1+2)

⇒2.3+22.3+........+29.3

⇒3.(2+22+....+29)⋮3

Vậy 21+22+23+....+210⋮3 (đpcm)

4 tháng 12 2017

Đặt biểu thức trên là A, ta có:

\(A=2^1+2^2+2^3+...+2^{10}\)

\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^9+2^{10}\right)\)

\(A=2^1.\left(1+2\right)+2^3.\left(1+2\right)+...+2^9.\left(1+2\right)\)

\(A=2^1.3+2^3.3+...+2^9.3\)

\(A=3.\left(2^1+2^3+...+2^9\right)\)

\(\Rightarrow A⋮3\)