Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)
\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)
\(A=3\left(2+2^3+...+2^{2009}\right)⋮3\)
\(A=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)
\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)
\(A=7\left(2^1+2^4+...+2^{2008}\right)⋮7\)
Các ý dưới bạn làm tương tự nhé.
Trả lời:
a, Ta có: 320 ; 274 = ( 33 )4 = 312
Vì 320 > 312 nên 320 > 274
b, 225 ; 166 = ( 24 )6 = 224
Vì 225 > 224 nên 225 > 166
*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)
\(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)
\(=6\times\left(2^2+2^3+...+2^{2008}\right)\)
\(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)
\(\Rightarrow A⋮3\)
*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)
\(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(\Rightarrow A⋮7\)
Mình sửa lại đề C 1 chút xíu
*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)
\(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)
\(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(\Rightarrow C⋮4\)
Các câu khác làm tương tự nhé. Chúc bạn học tốt!
Lời giải:
$A=(3+3^2+3^3)+(3^4+3^5+3^6)+....+(3^{88}+3^{89}+3^{90})$
$=3(1+3+3^2)+3^4(1+3+3^2)+...+3^{88}(1+3+3^2)$
$=(1+3+3^2)(3+3^4+...+3^{88})=13(3+3^4+...+3^{88})\vdots 13$
--------------------
$A=(3+3^2+3^3+3^4+3^5)+(3^6+3^7+3^8+3^9+3^{10})+...+(3^{86}+3^{87}+3^{88}+3^{89}+3^{90})$
$=3(1+3+3^2+3^3+3^4)+3^6(1+3+3^2+3^3+3^4)+...+3^{86}(1+3+3^2+3^3+3^4)$
$=(1+3+3^2+3^3+3^4)(3+3^6+...+3^{86})$
$=121(3+3^6+...+3^{86})=11.11.(3+3^6+...+3^{86})\vdots 11$
- 22.32.5:22.3-32=3.5-32=15-9=6
- 2.52-22.32:32=2.(52-2)=2.(25-2)=46
3. 33.19-33.12=33.(19-12)=33.7=189
4. 3.52-16:22=3.52-24:22=3.25-4=75-4=71