K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2021

- Từ PT ( II ) ta có : \(xy\left(x+y\right)=2xy=4m^2-2m\)

\(\Rightarrow xy=2m^2-m\)

- Hệ PT trên có nghiệm là nghiệm của PT :

\(x^2-2x+2m^2-m=0\) ( I )

Có : \(\Delta^,=b^{,2}-ac=1-\left(2m^2-m\right)=-2m^2+m-1\)

- Để PT ( i ) có nghiệm \(\Leftrightarrow\Delta^,>0\)

\(\Leftrightarrow-2m^2+m-1>0\)

Vậy không tồn tại m để hệ phương trình có nghiệm .

AH
Akai Haruma
Giáo viên
26 tháng 1 2021

Phương trình (i) có nghiệm $\Leftrightarrow \Delta\geq 0$ chứ không phải $>0$ bạn nhé. 

27 tháng 2 2021

`a,x-3y=2`

`<=>x=3y+2` ta thế vào phương trình trên:

`2(3y+2)+my=-5`

`<=>6y+4+my=-5`

`<=>y(m+6)=-9`

HPT có nghiệm duy nhất:

`<=>m+6 ne 0<=>m ne -6`

HPT vô số nghiệm

`<=>m+6=0,-6=0` vô lý `=>x in {cancel0}`

HPT vô nghiệm

`<=>m+6=0,-6 ne 0<=>m ne -6`

b,HPT có nghiệm duy nhất

`<=>m ne -6`(câu a)

`=>y=-9/(m+6)`

`<=>x=3y+2`

`<=>x=(-27+2m+12)/(m+6)`

`<=>x=(-15+2m)/(m+6)`

`x+2y=1`

`<=>(2m-15)/(m+6)+(-18)/(m+6)=1`

`<=>(2m-33)/(m+6)=1`

`2m-33=m+6`

`<=>m=39(TM)`

Vậy `m=39` thì HPT có nghiệm duy nhất `x+2y=1`

b)Ta có: \(\left\{{}\begin{matrix}2x+my=-5\\x-3y=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2+3y\\2\left(2+3y\right)+my=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2+3y\\6y+my+4=-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3y+2\\y\left(m+6\right)=-9\end{matrix}\right.\)

Khi \(m\ne6\) thì \(y=-\dfrac{9}{m+6}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3y+2\\y=\dfrac{-9}{m+6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\cdot\dfrac{-9}{m+6}+2\\y=-\dfrac{9}{m+6}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-27}{m+6}+\dfrac{2m+12}{m+6}=\dfrac{2m-15}{m+6}\\y=\dfrac{-9}{m+6}\end{matrix}\right.\)

Để hệ phương trình có nghiệm duy nhất thỏa mãn x+2y=1 thì \(\dfrac{2m-15}{m+6}+\dfrac{-18}{m+6}=1\)

\(\Leftrightarrow2m-33=m+6\)

\(\Leftrightarrow2m-m=6+33\)

hay m=39

Vậy: Khi m=39 thì hệ phương trình có nghiệm duy nhất thỏa mãn x+2y=1

17 tháng 2 2022

\(\left\{{}\begin{matrix}x+my=3\\x+2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(m-2\right)y=2\\x=1-2y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2}{m-2}\\x=1-\dfrac{4}{m-2}=\dfrac{m-6}{m-2}\end{matrix}\right.\)

a, Ta có x < 0 ; y > 0 

\(x< 0\Rightarrow\dfrac{m-6}{m-2}< 0\)

Ta có : m - 2 > m - 6 

\(\left\{{}\begin{matrix}m-2>0\\m-6< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>2\\m< 6\end{matrix}\right.\Leftrightarrow2< m< 6\)

\(y>0\Leftrightarrow\dfrac{2}{m-2}>0\Rightarrow m>2\)

Vậy 2 < m < 6 

b, \(x-2y=3\Rightarrow\dfrac{m-6}{m-2}-\dfrac{4}{m-2}=3\Leftrightarrow\dfrac{m-10}{m-2}=3\)

\(\Rightarrow m-10=3m-6\Leftrightarrow2m=-4\Leftrightarrow m=-2\)

Ta có: \(\left\{{}\begin{matrix}2x+3y=m\\5x-y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+3y=m\\15x-3y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}17x=m+3\\5x-y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m+3}{17}\\y=5x-1=\dfrac{5m+15}{17}-\dfrac{17}{17}=\dfrac{5m-2}{17}\end{matrix}\right.\)

Để hệ phương trình có nghiệm duy nhất sao cho x<0 và y>0 thì 

\(\left\{{}\begin{matrix}\dfrac{m+3}{17}< 0\\\dfrac{5m-2}{17}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m+3< 0\\5m-2>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< -3\\m>\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow m\in\varnothing\)

13 tháng 1 2022

\(\left\{{}\begin{matrix}\sqrt{2x}+\sqrt{3-y}=m\left(1\right)\\\sqrt{2y}+\sqrt{3-x}=m\left(2\right)\end{matrix}\right.\) \(\left(0\le x,y\le3\right)\)

\(\left(1\right)-\left(2\right)\Leftrightarrow\sqrt{2x}-\sqrt{2y}+\sqrt{3-y}-\sqrt{3-x}=0\)

\(\Leftrightarrow\dfrac{2x-2y}{\sqrt{2x}+\sqrt{2y}}+\dfrac{3-y-3+x}{\sqrt{3-y}+\sqrt{3-x}}=0\Leftrightarrow\left(x-y\right)\left(\dfrac{2}{\sqrt{2x}+\sqrt{2y}}+\dfrac{1}{\sqrt{3-y}+\sqrt{3-x}}\right)=0\Leftrightarrow\left[{}\begin{matrix}x=y\left(3\right)\\\dfrac{2}{\sqrt{2x}+\sqrt{2y}}+\dfrac{1}{\sqrt{3-y}+\sqrt{3-x}}=0\left(vô-nghiệm\right)\end{matrix}\right.\)

\(\left(1\right)và\left(3\right)\Rightarrow\sqrt{2x}+\sqrt{3-x}=m\)

\(m^2=x+3+2\sqrt{2x\left(3-x\right)}\ge3\Leftrightarrow\left[{}\begin{matrix}m\ge\sqrt{3}\\m\le-\sqrt{3}\end{matrix}\right.\)\(\left(4\right)\)

\(m\le\sqrt{3\left(x+3-x\right)}=3\left(5\right)\)

\(\left(4\right)\left(5\right)\Rightarrow\sqrt{3}\le m\le3\Rightarrow m=\left\{2;3\right\}\)

NV
13 tháng 1 2022

Trừ vế cho vế:

\(\sqrt{2x}-\sqrt{2y}+\sqrt{3-y}-\sqrt{3-x}=0\)

\(\Rightarrow\dfrac{\sqrt{2}\left(x-y\right)}{\sqrt{x}+\sqrt{y}}+\dfrac{x-y}{\sqrt{3-y}+\sqrt{3-x}}=0\)

\(\Leftrightarrow\left(x-y\right)\left(\dfrac{\sqrt{2}}{\sqrt{x}+\sqrt{y}}+\dfrac{1}{\sqrt{3-y}+\sqrt{3-x}}\right)=0\)

\(\Leftrightarrow x=y\)

Thế vào pt đầu:

\(\sqrt{2x}+\sqrt{3-x}=m\)

Ta có: \(\sqrt{2.x}+\sqrt{1.\left(3-x\right)}\le\sqrt{\left(2+1\right)\left(x+3-x\right)}=3\)

\(\sqrt{2x}+\sqrt{3-x}=\sqrt{x}+\sqrt{3-x}+\left(\sqrt{2}-1\right)\sqrt{x}\ge\sqrt{x+3-x}+\left(\sqrt{2}-1\right)\sqrt{x}\ge\sqrt{3}\)

\(\Rightarrow\sqrt{3}\le m\le3\Rightarrow m=\left\{2;3\right\}\)

23 tháng 1

\(\left\{{}\begin{matrix}2x-y=m+1\\x+y=2m-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x=3m\\2x-y=m+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=m\\y=m-1\end{matrix}\right.\)

Theo đề: \(x^2-2y-1=0\)

\(\Leftrightarrow m^2-2\left(m-1\right)-1=0\)

\(\Leftrightarrow m^2-2m+1=0\)

\(\Leftrightarrow\left(m-1\right)^2=0\Leftrightarrow m=1\).

Vậy: \(m=1.\)

14 tháng 4 2022

Bài 1.

\(\left\{{}\begin{matrix}x-3y=5-2m\\2x+y=3\left(m+1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3y=5-2m\\6x+3y=9m+9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}7x=7m+14\\x-3y=5-2m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\m+2-3y=5-2m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\-3y=-3m+3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\y=m-1\end{matrix}\right.\)

\(x_0^2+y_0^2=9m\)

\(\Leftrightarrow\left(m+2\right)^2+\left(m-1\right)^2=9m\)

\(\Leftrightarrow m^2+4m+4+m^2-2m+1-9m=0\)

\(\Leftrightarrow2m^2-7m+5=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}m=1\\m=\dfrac{5}{2}\end{matrix}\right.\) ( Vi-ét )

NV
6 tháng 2 2021

a.

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\le m\end{matrix}\right.\)

Hệ có nghiệm duy nhất \(\Leftrightarrow m=2\)

b.

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2+1\right)x\ge6\\2x\le6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{6}{m^2+1}\\x\le3\end{matrix}\right.\)

Hệ có nghiệm duy nhất \(\Leftrightarrow\dfrac{6}{m^2+1}=3\)

\(\Leftrightarrow m=\pm1\)

c.

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-6x+9\ge x^2+7x+1\\5x\ge2m-8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{8}{13}\\x\ge\dfrac{2m-8}{5}\end{matrix}\right.\)

Pt có nghiệm duy nhất khi \(\dfrac{2m-8}{5}=\dfrac{8}{13}\Leftrightarrow m=\dfrac{72}{13}\)

NV
6 tháng 2 2021

d.

Hệ có nghiệm duy nhất khi:

TH1:

 \(\left\{{}\begin{matrix}m>0\\\dfrac{m-3}{m}=\dfrac{m-9}{m+3}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\m^2-9=m^2-9m\end{matrix}\right.\) \(\Leftrightarrow m=1\)

TH2:

\(\left\{{}\begin{matrix}m+3< 0\\\dfrac{m-3}{m}=\dfrac{m-9}{m+3}\end{matrix}\right.\)

\(\Leftrightarrow m=1\) (ktm)

Vậy \(m=1\)

e.

\(\Leftrightarrow\left\{{}\begin{matrix}\left(2m-1\right)x\ge-2m+3\\\left(4-4m\right)x\le3\end{matrix}\right.\)

Hệ có nghiệm duy nhất khi:

\(\left\{{}\begin{matrix}\left(2m-1\right)\left(4-4m\right)>0\\\dfrac{-2m+3}{2m-1}=\dfrac{3}{4-4m}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2}< m< 1\\\left[{}\begin{matrix}m=\dfrac{3}{4}\\m=\dfrac{5}{2}\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow m=\dfrac{3}{4}\)