Bài 1: Cho tam giác ABC cân tại A. Vẽ AH vuông góc với BC tại H.
a) Chứng minh tam giác ABH = tam giác ACH.
b) Trên BA lấy D, trên CA lấy E sao cho BD = CE. Chứng minh tam giác HDE cân.
c) AH là trung trực của DE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, Theo định lí Pytago tam giác AHB vuông tại H
\(AH=\sqrt{AB^2-BH^2}=8cm\)
2, Xét tam giác ABH và tam giác ACH có
AB = AC ; AH _ chung
Vậy tam giác ABH = tam giác ACH (ch-cgv)
3, Vì tam giác ABC cân tại A có AH là đường cao
đồng thời là phân giác
Lại có DB = CE ; AB = AC
=> AD = AE
Xét tam giác ADH và tam giác AEH có
AD = AE ( cmt ) ; AH _ chung ; ^DAH = ^EAH
Vậy tam giác ADH = tam giác AEH (c.g.c)
=> DH = HE ( 2 cạnh tương ứng )
Vậy tam giác HDE cân tại H
4, Ta có AD/AB = AE/AC => DE//BC
1: AH=8cm
2: Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
Do đó: ΔABH=ΔACH
4: Xét ΔABC có AD/AB=AE/AC
nên DE//BC
sao lại viết tắt, ko có hình hay lời giải gì à, đọc thế ai hỉu
1: AH=8cm
2: Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
Do đó: ΔABH=ΔACH
4: Xét ΔABC có AD/AB=AE/AC
nên DE//BC
a, Xét tam giác HBA vuông tại H có:
AB2=AH2+BH2(định lí py ta go)
hay 100=AH2+36
=> AH2=64
=> AH=8(cm)
b, Xét tam giác ABH và tam giác ACH có:
góc AHB=góc AHC =90 độ
AB=AC (tam giác ABC cân tại A)
AH chung
=> tam giác ABH = tam giác ACH
c,
Xét tam giác DBH và tam giác ECH có:
BD=CE (gt)
góc DBH= góc ECH (tam giác ABC Cân tại A)
BH=CH (trong tam giác cân, đường cao đồng thời là đường trung tuyến)
=> tam giác DBH=tam giác ECH
=> DH=EH( 2 cạnh tương ứng)
=> tam giác HDE cân tại H
d) Vì AB = AC; BD = CE
mà AB - BD = AD
AC - CE = AE
=> AD = AE
Vì ΔHDE cân
=> H ∈ đường trung trực cạnh DE (1)
Xét ΔADHvàΔAEHcó
AD = AE (cmt)
AH (chung)
DH = HE (cmt)
Do đó: ΔADH=ΔAEH(c−c−c)
=> AD = AE ( hai cạnh tương ứng)
=> ΔADE cân tại A
=> A ∈ đường trung trực cạnh DE (2)
(1); (2) => A,H ∈ đường trung trực cạnh DE
=>AH là đường trung trực cạnh DE
CHÚC BẠN HỌC TỐT
bn j đó ơi cảm ơn bn đx giải cho mk nhung phần b) sai rồi nha
a: AH=8cm
b: Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
Do đó: ΔABH=ΔACH
c: Xét ΔDBH và ΔECH
DB=EC
\(\widehat{B}=\widehat{C}\)
BH=CH
Do đó: ΔDBH=ΔECH
Suy ra: HD=HE
hay ΔHDE cân tại H
d: Ta có: AD=AE
nên A nằm trên đường trung trực của DE(1)
Ta có: HD=HE
nên H nằm trên đường trung trực của DE(2)
Từ (1) và (2) suy ra AH là đường trung trực của DE