biet m=1/2 -1/2^2+1/2^7-1/2^10+.......+1/2^43-1/2^46+1/2^49-1/2^52. so sanh m va 9/4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{1}{2}-\frac{1}{2^4}+\frac{1}{2^7}-\frac{1}{2^{10}}+....+\frac{1}{2^{43}}-\frac{1}{2^{46}}+\frac{1}{2^{49}}-\frac{1}{2^{52}}\)
Nên \(2^3.M=4-\frac{1}{2}+\frac{1}{2^4}-\frac{1}{2^7}+.....+\frac{1}{2^{46}}-\frac{1}{2^{52}}\)
Suy ra \(2^3.M-M=4-\frac{1}{2^{52}}\)hay\(7.M=4-\frac{1}{2^{52}}\).
Khi đó \(M=\frac{4}{7}-\frac{1}{2^{52}.7}< 1\)
Vì \(\frac{9}{4}>1;M< 1\)nên \(\frac{9}{4}>M\)
Vậy \(\frac{9}{4}>M\)
g: \(=-457+237+23-123=-220-100=-320\)
h: \(=\left(1-3\right)+\left(5-7\right)+...+\left(41-43\right)+\left(45-47\right)\)
\(=\left(-2\right)+\left(-2\right)+...+\left(-2\right)+\left(-2\right)\)
\(=-2\cdot12=-24\)
i: \(=173+27-46-54-19=200-100-19=100-19=81\)
k: \(=-52+82+49-15+13-36\)
\(=30+34-23\)
=30+11
=41
l: \(=\left(3-5\right)+\left(7-9\right)+\left(11-13\right)+\left(15-17\right)\)
\(=\left(-2\right)+\left(-2\right)+\left(-2\right)+\left(-2\right)\)
=-8
m: \(=\left(1-2\right)+\left(3-4\right)+...+\left(2001-2002\right)+2003\)
\(=2003-1-1-...-1\)
\(=2003-1001=1002\)
n:Số số hạng là:
\(\left[\left(-51\right)-\left(-99\right)\right]:1+1=49\left(số\right)\)
Tổng là \(\left(-51-99\right)\cdot\dfrac{49}{2}=-3675\)
o: \(=-62-38+1523-2523-92\)
\(=-100+1000-92=900-92=808\)
\(A=\frac{1+5+5^2+...+5^9}{1+5+5^2+...+5^8}=\frac{1+5\left(1 +5+5^2+...+5^8\right)}{1+5+5^2+...+5^8}=5+\frac{1}{1+5+5^2+...+5^8} \)
\(B=\frac{1+3+3^2+....+3^9}{1+3+3^2+....+3^8}=\frac{1+3\left(1+3+3^2+....+3^8\right)}{1+3+3^2+....+3^8}=3+\frac{1}{1+3+3^2+....+3^8}\)
\(=5+\frac{1}{1+3+3^2+....+3^8}-2\)
Có: \(\frac{1}{1+5+5^2+...+5^8}>0\) và \(\frac{1}{1+3+3^2+....+3^8}-2< 0\)
\(\Rightarrow A>B\)
a) Ta có:
+) \(\dfrac{1}{2}=\dfrac{3}{6}\)
+) \(\dfrac{1}{3}=\dfrac{2}{6}\)
+) \(\dfrac{2}{3}=\dfrac{4}{6}\)
=> \(\dfrac{2}{6}< \dfrac{3}{6}< \dfrac{4}{6}\)
hay \(\dfrac{1}{3}< \dfrac{1}{2}< \dfrac{2}{3}\)
b) Ta có:
+) \(\dfrac{4}{9}=\dfrac{56}{126}\)
+) \(-\dfrac{1}{2}=-\dfrac{63}{126}\)
+) \(\dfrac{3}{7}=\dfrac{54}{126}\)
=> \(-\dfrac{63}{126}< \dfrac{54}{126}< \dfrac{56}{126}\)
hay \(-\dfrac{1}{2}< \dfrac{3}{7}< \dfrac{4}{9}\)
c) Ta có:
+) \(\dfrac{27}{82}=\dfrac{2025}{6150}\)
+) \(\dfrac{26}{75}=\dfrac{2132}{6150}\)
=> \(\dfrac{2025}{6150}< \dfrac{2132}{6150}\)
hay \(\dfrac{27}{82}< \dfrac{26}{75}\)
d) Ta có:
+) \(-\dfrac{49}{78}=-\dfrac{4655}{7410}\)
+) \(-\dfrac{64}{95}=-\dfrac{4992}{7410}\)
=> \(-\dfrac{4665}{7410}>-\dfrac{4992}{7410}\)
hay \(-\dfrac{49}{78}>-\dfrac{64}{95}\)