Tìm số nguyên n để phân số sau có giá trị nguyên: n + 5/ n + 2
mấy bạn giải ra cặn kẽ giúp mik nhé
Thanks nhìu!!!!!!!!!!!!!!!!!!!
mik đang cần gấp lắm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để phân số nhận giá trị nguyên
=> 8n - 3 chia hết cho 4n + 2
8n + 4 - 4 - 3 chia hết cho 4n + 2
2(4n + 2) - 7 chia hết cho 4n + 2
=> 7 chia hết cho 4n + 2
=> 4n + 2 thuộc Ư(7) = {1 ; -1 ;7 ; -7}
Xét các giá trị trên , ta có bảng sau
4n + 2 | 1 | -1 | 7 | -7 |
n | -1/4 | -3/4 | 5/4 | -9/4 |
Để 8n-3/4n+3 có giá trị là số nguyên thì 8n-3:4n+3
Ta có: 8n-3:4n+3
=>8n+6-9:4n+3
=>2(4n+3)-9:4n+3
Mà 2(4n+3):4n+3
=>9:4n+3
=>4n+3 thuộc Ư(9)=-1;1;-3;3;-9;9
Nếu 4n+3=-1 thì n=-1
Nếu 4n+3=1 thì -0.5(loại)
Nếu 4n+3=-3 thì n=-1.5(loại)
Nếu 4n+3=3 thì n=0
Nếu 4n+3=-9 thì n=-3
Nếu 4n+3=9 thì n=1.5(loại)
Vậy n=-1;-3;0
ta có :
\(M=\frac{3\times\left(n+4\right)-17}{n+4}=3-\frac{17}{n+4}\) nguyên khi n+4 là ước của 17 hay
\(n+4\in\left\{\pm1;\pm17\right\}\Leftrightarrow n\in\left\{-21;-5;-3;13\right\}\)
\(A=\dfrac{n-3}{n+2}=1-\dfrac{5}{n+2}\)
TH1 : n >=-1 => n+2>=1 >0
\(\Rightarrow A\ge1-\dfrac{5}{1}=-4\)
Dấu = khi n=-1
TH2: n<= -3 => n+2<=-1 <0
\(\Rightarrow A\le1-\dfrac{5}{-1}=6\)
Dấu = xảy ra khi n=-3
Cảm ơn vì bn đã giúp. Nhưng bn có thể giải chi tiết cho mik đc ko ạ?
a) Để \(A=\frac{7}{9}\Leftrightarrow\frac{5n+2}{2n+7}=\frac{7}{9}\)
\(\Leftrightarrow9\left(5n+2\right)=7\left(2n+7\right)\)
\(\Leftrightarrow45n+18=14n+49\)
\(\Leftrightarrow31n=31\)
\(\Leftrightarrow n=1\)
n) Để A nguyên thì \(\frac{5n+2}{2n+7}\in Z\)
Nếu A nguyên thì 2A cũng nguyên. Vậy ta tìm n nguyên để 2A nguyên sau đó thử lại để chọn các giá trị đúng của n.
\(2A=\frac{10n+4}{2n+7}=\frac{5\left(2n+7\right)-31}{2n+7}=5-\frac{31}{2n+7}\)
Để 2A nguyên thì \(2n+7\inƯ\left(31\right)=\left\{\pm1;\pm31\right\}\)
Ta có bảng:
2n + 7 | 1 | -1 | 31 | -31 |
n | -3 | -4 | 12 | -19 |
KL | TM | TM | TM | TM |
Vậy ta có \(n\in\left\{-1;-4;12;-19\right\}\)
c
để \(\frac{7}{x^2-x+1}\in Z\Leftrightarrow x^2-x+1\inƯ_7=\left\{\pm1;\pm7\right\}\)
nếu \(x^2-x+1=-7\Leftrightarrow x^2-x+8=0\left(vo nghiem\right)\)
nếu \(x^2-x+1=-1\Leftrightarrow x^2-x +2=0\left(vo nghiem\right)\)
nếu \(x^2-x+1=1\Leftrightarrow x^2-x=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=0\end{cases} }\)
nếu \(x^2-x+1=7\Leftrightarrow x^2-x-6=0\Leftrightarrow\hept{\begin{cases}x=3\\x=-2\end{cases} }\)
vậy \(x\in\left\{-2,0,1,3\right\}\)
Để \(\frac{7}{x^2-x+1}\)ta có : \(x^2-x+1=x^2-x+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
hay \(7⋮\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Xét từng trường hợp :
TH1 : \(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=1\Leftrightarrow\left(x-\frac{1}{2}\right)^2=\frac{1}{4}\Leftrightarrow x-\frac{1}{2}=\pm\frac{1}{2}\)
\(\Leftrightarrow x_1=\frac{1}{2}+\frac{1}{2}=1;x_2=-\frac{1}{2}+\frac{1}{2}=0\)( chọn )
TH2 : \(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=-1\Leftrightarrow\left(x-\frac{1}{2}\right)^2=-\frac{7}{4}\)ko thỏa mãn
tương tự 2 trường hợp còn lại
\(A=\frac{3n-4}{n+1}\)
\(\text{Để A }\frac{3n-4}{n+1}\text{ là số nguyên }\)
\(\Rightarrow3n-4⋮n+1\)
\(\Rightarrow3n+3-7⋮n+1\)
\(\Rightarrow3\left(n+1\right)-7⋮n+1\)
\(\text{Vì }3\left(n+1\right)⋮n+1\text{ nên }7⋮n+1\)
\(\Rightarrow n+1\inƯ\left(7\right)\)
\(\Rightarrow n+1\in\left\{\pm1;\pm7\right\}\)
\(\Rightarrow n\in\left\{0;-2;6;-8\right\}\)
nh co de cuong cua mik cung co chung minh nh can phai tinh cac so ng n de bieu thuc co gia tri la so ng
n+1n−2
=n+3−2n−2
=n−2+3n−2
=n−2n−2 +3n−2
Suy ra n - 2 thuộc ước của 3
Ta có Ư( 3 ) = { -1;-3;1;3 }
Do đó
n - 2 = -1
n = -1 + 2
n = 1
n - 2 = -3
n = -3 + 2
n = -1
n - 2 = 1
n = 1 + 2
n = 3
n - 2 = 3
n = 3 + 2
để n+5/n+2 thuộc Z
=>n+5 chia hết n+2
mà n+5=n+2+3
=>n+2+3 chia hết n+2
=>3 chia hết n+2
=>n+2 thuộc Ư(3)
mà Ư(3)={1;-1;3;-3}
=>n+3 thuộc {1;-1;3;-3}
=>n thuộc {-2;-4;0;-6}
rất cặn kẽ rùi đó
n + 5 : n + 2
=> n + 2 + 3 : n + 2
=> n + 2 \(\in\) Ư ( 8 ) = { -1 ; 1 ; -2 ; 2 ; - 4 ; 4 ; -8 ; 8 }
=> n + 2 = -1 => n = -3
=> n + 2 = 1 => n = -1
=> n + 2 = -2 => n = -4
=> n + 2 = 2 => n =0
=> n + 2 = -4 => n = -6
=> n + 2 = 4 => n = 2
=> n + 2 = -8 => n = -10
=> n + 2 = 8 => n = 6