K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2022

A nhé

16 tháng 2 2022

Chọn A

20 tháng 10 2021

phải gửi bài thì mới biết được chứ

20 tháng 10 2021

chịu tự làm ok nhóc

29 tháng 1 2022

Nhìn SGK ấy

31 tháng 1 2022

Do \(M\in d\) nên M(1+2t; 1-t ; t) 

MA+MB= \(\sqrt{4t^2+\left(t-1\right)^2+\left(t+1\right)^2}+\sqrt{\left(2t-1\right)^2+t^2+\left(t-1\right)^2}\)

\(=\sqrt{6t^2+2}+\sqrt{6t^2-6t+2}=\sqrt{6t^2+2+}\sqrt{6.\left(t-\dfrac{1}{2}\right)^2+\dfrac{1}{2}}\) 

Chọn \(\overset{r}{u}=\left(\sqrt{6t};\sqrt{2}\right);\overset{r}{v}=\left(\sqrt{6}.\left(\dfrac{1}{2}-t\right);\dfrac{1}{\sqrt{2}}\right)\)

\(\Rightarrow\overset{r}{u}+\overset{r}{v}=\left(\dfrac{\sqrt{6}}{2};\dfrac{3}{\sqrt{2}}\right)\) , Ta có :

MA+MB=\(\left|\overset{r}{u}\right|+\left|\overset{r}{v}\right|\ge\left|\overset{r}{u}+\overset{r}{v}\right|=\sqrt{\dfrac{6}{4}+\dfrac{9}{2}}=\sqrt{6}\)

Dấu đẳng thức xảy ra <=> \(\overset{r}{u};\overset{r}{v}\) cùng hướng

\(\Leftrightarrow\dfrac{\sqrt{6t}}{\sqrt{6}\left(\dfrac{1}{2}-t\right)}=\dfrac{\sqrt{2}}{\dfrac{1}{\sqrt{2}}}\Leftrightarrow1=1-2t\)

\(\Leftrightarrow t=\dfrac{1}{3}\) . Vậy MA+MB nhỏ nhất

\(\Leftrightarrow M\left(\dfrac{5}{3},\dfrac{2}{3};\dfrac{1}{3}\right)\)

Vậy chọn D 

Chọn A

1 tháng 2 2022

(SAB) và (SCD) có AB // CD => giao tuyến của chúng là 1 đường thẳng song song với AB và CD

Mà SD vuông góc với CD; SA vuông góc với AB nên góc giữa 2 mp (SAB) và (SCD) là góc giữa SA và SD hay là góc ASD

tan \(\widehat{ASD}\) = \(\dfrac{AD}{SA}\) = \(\dfrac{1}{\sqrt{3}}\)

=> \(\widehat{ASD}=30^{^o}\)

1 tháng 2 2022

Giúp suốt mà bạn chẳng tick nun, mùng mọt ròi chơi đuy 33

31 tháng 1 2022

A thì phải

31 tháng 1 2022

+ số phần tử của không gian mẫu là: \(n\left(\pi\right)=C\overset{1}{6}.C\overset{1}{6}=36\)

+ gọi A bằng " Cả 2 lần xuất hiện mặt 6 chấm "

số phần tử của biến cố A là n(A) =1

Xác xuất biến cố A là P(A) = \(\dfrac{n\left(A\right)}{n\left(\pi\right)}=\dfrac{1}{36}\)

Vậy chọn A

16 tháng 2 2022

B nhé

NV
16 tháng 2 2022

\(g'\left(x\right)=3.f'\left(3x\right)+9=0\Rightarrow f'\left(3x\right)=-3\Rightarrow\left[{}\begin{matrix}3x=-1\\3x=0\\3x=1\\3x=2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=0\\x=\dfrac{1}{3}\\x=\dfrac{2}{3}\end{matrix}\right.\)

\(\Rightarrow\) Trên \(\left[-\dfrac{1}{3};\dfrac{1}{3}\right]\) hàm \(g\left(x\right)\) đạt cực đại tại \(x=0\) và cực tiểu tại \(x=-\dfrac{1}{3};\dfrac{1}{3}\)

\(\Rightarrow g\left(x\right)_{max}=g\left(0\right)=f\left(0\right)\)

31 tháng 5 2021

Thời gian Trung bình của bạn Nam đi từ nhà đến trường  là:

\(\overline{X}=\dfrac{25.2+26.4+27.6+28.2+29.1}{15}\)\(\sim\)24

Thời gian Trung bình của bạn Nam đi từ nhà đến trường  là:

X=\(\dfrac{25.2+26.4+27.6+28.2+29}{15}\)\(\sim\)24

mo là 27

Câu 48: A

Câu 49: B