Một tam giác vuông có cạnh huyền bằng 17cm, một cạnh góc vuông bằng 8cm.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi cạnh góc vuông còn lại là x , áp dụng định lí py ta go ta có
\(8^2+x^2=17^2\)
\(\Rightarrow x^2=17^2-8^2\)
\(\Rightarrow x^2=225\)
Chu vi tam giác = 15 + 17 + 8 = 40 (cm)
Gọi độ dài cạnh góc vuông cần tìm là x
Xét tam giác trên ta có:
=> 82 + x2 = 172
x2 = 172 - 82 = 225 = 152
=> x = 15 cm
Chu vi tam giác là:
17 + 8 + 15 = 40 (cm)
Gọi độ dài của hai cạnh góc vuông lần lượt là x và y. (Điều kiện: x, y > 0)
Theo đề bài ta có: x 2 + y 2 = 13 2 = 169 x + y = 17
Từ đó tính được (x, y) = (5, 12) hoặc (12,5)
Þ Diện tích tamgiacs đó là: S = 30cm2
Gọi 2 cạnh góc vuông là a, b (cm; a,b >0)
Ta có: \(\left\{{}\begin{matrix}a+b=17\left(1\right)\\a^2+b^2=13^2=169\left(Pytago\right)\left(2\right)\end{matrix}\right.\)
(1) <=> (a+b)2 = 289
<=> 2ab = 120
<=> ab = 60
<=> \(S=\dfrac{ab}{2}=\dfrac{60}{2}=30\left(cm^2\right)\)
Gọi 2 cạnh góc vuông và cạnh huyền lần lượt là a, b và c
Áp dụng định lí Pi-ta-go, ta có: \(a^2+b^2=c^2=169\)
Mặt khác a+b=17\(\Rightarrow\left(a+b\right)^2=289\Leftrightarrow a^2+b^2+2ab=289\Leftrightarrow169+2ab=289\Rightarrow ab=60\)
\(\Rightarrow S_{\Delta}=\frac{ab}{2}=\frac{60}{2}=30\)
a)Gọi M là trung điểm cạnh huyền BC, Góc B=30 độ => Góc C=60 độ
Theo t/c đường trung tuyến trong tam giác vuông : AM=1/2.BC=MC
=> Tam giác AMC cân tại A
Mà góc C=60 độ => tâm giác AMC đều => AC=MC=1/2.BC => Cạnh đối diện với góc 30 độ bằng một nửa cạnh huyền
b)Theo t/c đường trung tuyến trong tam giác vuông : AM=1/2.BC=MC
Mà AC=BC => Tam giác AMC đều => Góc C=60 độ => Góc A=30 độ =>góc đối diện với cạnh bằng 1/2 cạnh huyền bằng 30 độ
Chứng minh:
Ta có: ^C= 30° => ^B= 60°
Trên cạnh BC lấy điểm M sao cho AB = BM.
=> ∆ABM cân tại B mà ^B= 60°
=>∆ABM đều
=> AB= BM= AM (1)
và ^BAM= ^B= ^BMA= 60°
∆ABC vuông tại A
=> ^B + ^C = 90°
=> 60° + ^C = 90°
=> ^C = 30° (2)
Ta lại có : ^BAM + ^MAC = ^BAC
=> 60° + ^MAC = 90°
=> ^MAC = 30° (3)
Từ (1) và (2): => ^MAC = ^C ( = 30°)
=> ∆AMC cân tại M
=> AM = MC (4)
Từ (1) và (4): => AB = BM =mc
=> 2AB = BM + MC
=> 2AB = BC
=> AB = BC/2 (đpcm)
b)
hello