Cho \(\frac{2a+b}{c}\)= \(\frac{2b+c}{a}\)=\(\frac{2c+a}{b}\)Tính \(\frac{2a+b}{c}\)+\(\frac{a}{2b+c}\)+\(\frac{3b}{2c+a}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{2a+b}{c}=\frac{2b+c}{a}=\frac{2c+a}{b}=\frac{2a+b+2b+c+2c+a}{a+b+c}=\frac{3\left(a+b+c\right)}{a+b+c}=3\)
\(\Rightarrow\frac{2a+b}{c}=\frac{3}{3}=1=\frac{a}{2b+c}=\frac{3b}{2c+a}\)
Vậy \(\frac{2a+b}{c}=\frac{a}{2b+c}=\frac{3b}{2c+a}=1\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2b+c-a}{a}=\frac{2c-b+a}{b}=\frac{2a+b-c}{c}=\frac{2a+2b+2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
Do đó :
\(\frac{2b+c-a}{a}=2\)\(\Rightarrow\)\(c=3a-2b\)\(;\)\(2b=3a-c\)\(\left(1\right)\)
\(\frac{2c-b+a}{b}=2\)\(\Rightarrow\)\(a=3b-2c\)\(;\)\(2c=3b-a\)\(\left(2\right)\)
\(\frac{2a+b-c}{c}=2\)\(\Rightarrow\)\(b=3c-2a\)\(;\)\(2a=3c-b\)\(\left(3\right)\)
Thay (1), (2) và (3) vào \(P=\frac{\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)}{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)}\) ta được :
\(P=\frac{c.a.b}{2b.2c.2a}=\frac{abc}{8abc}=\frac{1}{8}\)
Vậy \(P=\frac{1}{8}\)
Chúc bạn học tốt ~
Phùng Minh Quân sai nha nếu a+b+c = 0 thì a+b+c / 2(a+b+c) thì nó không bằng 1/2 đc mà nó bằng 0
P = \(\frac{a^2c}{a^2c+c^2b+b^2a+}+\frac{b^2a}{b^2a+a^2c+c^2b}+\frac{c^2b}{c^2b+b^2a+a^2c}\)
P = \(\frac{a^2c+b^2a+c^2b}{a^2c+c^2b+b^2a}=1\)
\(P=\frac{\frac{a}{b}}{\frac{a}{b}+\frac{c}{a}+\frac{b}{c}}+\frac{\frac{b}{c}}{\frac{b}{c}+\frac{a}{b}+\frac{c}{a}}+\frac{\frac{c}{a}}{\frac{c}{a}+\frac{b}{c}+\frac{a}{b}}=\frac{\frac{a}{b}+\frac{b}{c}+\frac{c}{a}}{\frac{a}{b}+\frac{b}{c}+\frac{c}{a}}=1\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2b+c-a}{a}=\frac{2c-b+a}{b}=\frac{2a+b-c}{c}=\frac{2b+c-a+2c-b+a+2a+b-c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
Do đó :
\(\frac{2b+c-a}{a}=2\)\(\Rightarrow\)\(2b=2a+a-c=3a-c\)\(\left(1\right)\)
\(\frac{2c-b+a}{b}=2\)\(\Rightarrow\)\(2c=2b-a+b=3b-a\)\(\left(2\right)\)
\(\frac{2a+b-c}{c}=2\)\(\Rightarrow\)\(2a=2c+c-b=3c-b\)\(\left(3\right)\)
Thay (1), (2) và (3) vào P ta được :
\(P=\frac{\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)}{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)}\)
\(P=\frac{\left(3a-3a+c\right)\left(3b-3b+a\right)\left(3c-3c+b\right)}{2b.2c.2a}\)
\(P=\frac{abc}{8abc}=\frac{1}{8}\)
Vậy \(P=\frac{1}{8}\)
Chúc bạn học tốt ~
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{2a+b}{c}=\dfrac{2b+c}{a}=\dfrac{2c+a}{b}=\dfrac{2a+b+2b+c+2c+a}{c+a+b}\)
\(=\dfrac{3a+3b+3c}{a+b+c}=\dfrac{3.\left(a+b+c\right)}{a+b+c}=3\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{2a+b}{c}=3\\\dfrac{2b+c}{a}=3\\\dfrac{2c+a}{b}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a+b=3c\\2b+c=3a\\2c+a=3b\end{matrix}\right.\)
Thay \(\left\{{}\begin{matrix}2a+b=3c\\2b+c=3a\\2c+a=3b\end{matrix}\right.\)vào \(\dfrac{2a+b}{c}+\dfrac{a}{2b+c}+\dfrac{3b}{2c+a}\)ta được:
\(\dfrac{3c}{c}+\dfrac{a}{3a}+\dfrac{3b}{3b}=3+\dfrac{1}{3}+1=\dfrac{13}{3}\)
Vậy.....
Áp dụng tính chất của dãy tỉ số bwangf nhau ta có :
\(\frac{2a+b}{c}=\frac{2b+c}{a}=\frac{2c+a}{b}=\frac{2a+b+2b+c+2c+a}{a+b+c}=3\)
nên ta có : \(\hept{\begin{cases}2a+b=3c\\2b+c=3a\\2c+a=3b\end{cases}\Rightarrow a=b=c\Rightarrow\frac{2a+b}{c}+\frac{a}{2b+c}+\frac{3b}{2c+a}=3+\frac{1}{3}+1=\frac{13}{3}}\)