Tìm F biết F= 1.2 + 3.4 + 5.6 +......+ 99.100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Fx3=1x2x3+2x3x(4-1)+3x4x(5-2)+4x5x(6-3)+...+99x100x(101-98
Fx3=1x2x3+2x3x4-1x2x3+3x4x5-2x3x4+4x5x6-3x4x5+...+99x100x101-98x99x100
Fx3=99x100x101
F=333300
3F = 1 . 2 . 3 + 3 . 4 . ( 5 - 2 ) + 5 . 6 . ( 7 - 4 ) +.....+ 99 . 100 . (101 - 98 )
3F = 1. 2 . 3 + 3. 4 . 5 - 2 . 3 . 4 + 5 . 6 . 7 - 4 . 5 . 6 +.....+ 99 . 100 . 101 - 98 . 99 . 100
3F = 1 . 2 . 3 + 99 . 100. 101
3F = 3 . 2 + 3 . 33 . 100 . 101
3F = 3 ( 2 + 333 300)
=>F = 3 . 333 302 : 3
=> F = 333 302
Vậy F = 333 302
G = \(1^2\)+\(2^2\)+ \(3^2\)+....+\(100^2\)
G=1 +2(1+1) +3(2+1) +..... + 100(99+1)
G=1 + 1.2+ 2 + 2.3 +3+ ......+ 99.100+100
G=(1+2+3+....+100) +(1.2+2.3+.....+99.100)
G= \(\frac{100\left(100+1\right)}{2}\)+\(\frac{100\left(100-1\right)\left(100+1\right)}{3}\)
G=5050+333300
G=338350
\(A=\left(2-1\right).2+\left(4-1\right).4+\left(6-1\right).6+...+\left(100-1\right).100\\ A=2^2-2+4^2-4+6^2-6+...+100^2-100\\ A=\left(2^2+4^2+...+100^2\right)-\left(2+4+...+100\right)\\ A=2^2\left(1+2^2+3^2+...+50^2\right)-\dfrac{\left(100+2\right).50}{2}\\ A=\dfrac{4.50.51.52}{6}-\dfrac{102.50}{2}=85850\)
Đặt S= 1.2 + 2.3 + 3.4 + ...+ 99.100
=>3S = 1.2.3+2.3.3+3.4.3+...+98.99.3+99.100.3
3S= 1.2.3+2.3(4-1)+3.4(5-2)+...+98.99(100-97)+99.100(101-98)
3S= 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...-97.98.99+99.100.101-98.99.100
3S = 99.100.101
3S = 3.33.100.101
S=33.100.101
= 333300
Ta có: A = (2 – 1).2 + (4 – 1).4 + (6 – 1).6 + … + (100 – 1).100
A = 22 – 2 + 42 – 4 + 62 – 6 + … + 1002 – 100
A = (22 + 42 + 62 + … + 1002) – (2 + 4 + 6 + … + 100)
A = 22.(12 + 22 + 32 + … + 502) – (100 + 2).50 : 2
A = 22.50.51.52 : 6 – 51.50 = 88400 – 2550 = 85850.
\(B=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(B=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(B=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)
\(B=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
\(B< \frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\)
\(B< \frac{50}{60}\Leftrightarrow B< \frac{5}{6}\)