Rút gọn
a) 10+5/4*5
b) 2^2*9/27*2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\)
\(a,\sqrt{6-2\sqrt{5}}=\sqrt{\sqrt{5^2}-2.\sqrt{5}.1+1}=\sqrt{\left(\sqrt{5}-1\right)^2}=\left|\sqrt{5}-1\right|=\sqrt{5}-1\)
\(b,\sqrt{8+2\sqrt{7}}=\sqrt{\sqrt{7^2}+2.\sqrt{7}.1+1}=\sqrt{\left(\sqrt{7}+1\right)^2}=\left|\sqrt{7}+1\right|=\sqrt{7}+1\)
\(2,\)
\(a,\sqrt{\left(\sqrt{10}-3\right)^2}-\sqrt{10}\)
\(=\left|\sqrt{10}-3\right|-\sqrt{10}\)
\(=\sqrt{10}-\sqrt{10}-3\)
\(=-3\)
\(b,\sqrt{\left(5+\sqrt{7}\right)^2}-\sqrt{8-2\sqrt{7}}\)
\(=\left|5+\sqrt{7}\right|-\sqrt{\left(\sqrt{7}-1\right)^2}\)
\(=5+\sqrt{7}-\left|\sqrt{7}-1\right|\)
\(=5+\sqrt{7}-\sqrt{7}+1\)
\(=6\)
a: \(=\dfrac{20\left(1-12\right)}{30\left(-1-10\right)}=\dfrac{2}{3}\)
b: \(=\dfrac{11^9\cdot3^{18}}{3^{18}\cdot11^{11}}=\dfrac{1}{121}\)
a: \(=\dfrac{20\left(1-12\right)}{30\left(-1-10\right)}=\dfrac{20}{30}=\dfrac{2}{3}\)
b: \(=\dfrac{11^9\cdot3^{18}}{3^{10}\cdot11^{11}\cdot3^8}=\dfrac{1}{121}\)
a: Ta có: \(\left(8\cdot5^7+5^6-5^5\right):5^5\)
\(=8\cdot5^2+5-1\)
\(=200+4=204\)
b: Ta có: \(\left(9^{30}-27^{19}\right):3^{57}+\left(125^9-25^{12}\right):5^{24}\)
\(=3^{60}:3^{57}-3^{57}:3^{57}+5^{27}:5^{24}-5^{24}:5^{24}\)
\(=27-1+125-1\)
=150
a. (8,57 - 55 + 56) : 55
= (8,57 : 55) - (55 : 55) + (56 : 55)
= 1,72 - 1 + 5
= 2,89 - 1 + 5
= 6,89
b. (930 - 2719) : 357 + (1259 - 2512) : 524
= (930 : 357) - (2719 : 357) + (1259 : 524) - (2512 : 524)
= 33 - 1 + 125 - 1
= 27 - 1 + 125 - 1
= 150
c. (1012 + 511 . 29 - 513 - 28) : 4 . 55 . 106
= (1012 + 2,5 , 1010 - 513 - 28) : 1,25 . 1010
= (1012 : 1,25 . 1010) + (2,5 . 1010 : 1,25 . 1010) - (513 : 1,25 . 1010) - (28 : 1,25 . 1010)
= 80 + 2 - \(\dfrac{25}{256}\) - \(\dfrac{1}{48828125}\)
= 81,90234373 \(\approx\) 82
1:
a: Vì \(\dfrac{-4}{3}=\dfrac{-4\cdot3}{3\cdot3}=\dfrac{-12}{9}=\dfrac{12}{9}\\ \Rightarrow\dfrac{-4}{3}=\dfrac{12}{9}\)
b: Vì : \(-2\cdot3=-6\\ -6\cdot8=-48\)
nên 2 p/s ko bằng nhau
\(a,=2\sqrt{3}+9\sqrt{3}-10\sqrt{3}=\sqrt{3}\\ b,=\left|1-\sqrt{2}\right|+\sqrt{5}=\sqrt{2}-1+\sqrt{5}\)
a) \(A=\sqrt{4-2\sqrt{3}}-\sqrt{4+2\sqrt{3}}\)
\(=\sqrt{\left(\sqrt{3}\right)^2-2.\sqrt{3}.1+1^2}-\sqrt{\left(\sqrt{3}\right)^2+2.\sqrt{3}.1+1^2}\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{\left(\sqrt{3}+1\right)^2}=\left|\sqrt{3}-1\right|-\left|\sqrt{3}+1\right|\)
\(=\sqrt{3}-1+-\sqrt{3}-1=-2\)
b) \(B=\sqrt{11-6\sqrt{2}}-\sqrt{3-2\sqrt{2}}\)
\(=\sqrt{3^2-2.3.\sqrt{2}+\left(\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{2}\right)^2-2.\sqrt{2}.1+1^2}\)
\(=\sqrt{\left(3-\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{2}-1\right)^2}=\left|3-\sqrt{2}\right|-\left|\sqrt{2}-1\right|\)
\(=3-\sqrt{2}-\sqrt{2}+1=4-2\sqrt{2}\)
c) \(C=\left(\sqrt{3}+\sqrt{5}\right)\sqrt{7-2\sqrt{10}}\)
\(=\left(\sqrt{5}+\sqrt{3}\right)\sqrt{\left(\sqrt{5}\right)^2-2.\sqrt{5}.\sqrt{2}+\left(\sqrt{2}\right)^2}\)
\(=\left(\sqrt{5}+\sqrt{3}\right)\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}=\left(\sqrt{5}+\sqrt{3}\right)\left|\sqrt{5}-\sqrt{2}\right|\)
\(=\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{2}\right)=5-\sqrt{10}+\sqrt{15}-\sqrt{6}\)
10+1/4
=41/4
b) 4 x 9 / 27 x 2
= 2/3
10+\(\frac{1}{4}\)
=\(\frac{41}{4}\)
b) 4 x \(\frac{9}{27}\) x 2
= \(\frac{2}{3}\)