K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 2 2022

Gọi I là trung điểm AH

M và N đều nhìn AH dưới 1 góc vuông \(\Rightarrow\) tứ giác AMHN nội tiếp đường tròn (I) đường kính AH

Mặt khác \(IH\perp KH\Rightarrow KH\) là tiếp tuyến của (I)

Theo tính chất phương tích: \(KH^2=KM.KN\)

Lại có: \(\widehat{AHN}=\widehat{ACB}\) (cùng phụ \(\widehat{HAN}\))

\(\widehat{AHN}=\widehat{AMN}\) (cùng chắn cung AN của đường tròn (I))

\(\widehat{AMN}=\widehat{KMB}\) (đối đỉnh)

\(\Rightarrow\widehat{KMB}=\widehat{ACB}\)

Xét hai tam giác KMB và KCN có:

\(\left\{{}\begin{matrix}\widehat{BKM}\text{ chung}\\\widehat{KMB}=\widehat{ACB}\left(cmt\right)\end{matrix}\right.\) \(\Rightarrow\Delta KMB\sim\Delta KCN\left(g.g\right)\)

\(\Rightarrow\dfrac{KB}{KN}=\dfrac{KM}{KC}\Rightarrow KM.KN=KB.KC\)

\(\Rightarrow KH^2=KB.KC\)

NV
13 tháng 2 2022

undefined

30 tháng 4 2019

A B C H M N K

BM // NH. ta có : \(\frac{KB}{KH}=\frac{KM}{KN}\)

MH // NC . ta có : \(\frac{KM}{KN}=\frac{KH}{KC}\)

\(\Rightarrow\frac{KB}{KH}=\frac{KH}{KC}\)

\(\Rightarrow KB.KB=KH^2\)

a: Xét tứ giác AMHN có

\(\widehat{AMH}=\widehat{ANH}=\widehat{NAM}=90^0\)

Do đó: AMHN là hình chữ nhật

Suy ra: MN=AH

b: Xét ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC=AH^2\)

1 tháng 3 2022

cảm ơn bạn nha còn c, d, e nữa:3

23 tháng 1 2018

Chọn C

a: Xét ΔABC có

M là trung điểm của BA
N là trung điểm của AC

Do đó: MN là đường trung bình

=>MN//BC và MN=BC/2

=>MN=BE và MN//BE

=>BMNE là hình bình hành

b: Ta có: ΔAHB vuông tại H

mà HM là đường trung tuyến

nên HM=AM

=>M nằm trên đường trung trực của AH(1)

Ta có: ΔAHC vuông tại H

mà HN là đường trung tuyến

nên HN=AC/2=AN

=>N nằm trên đường trung trực của AH(2)

Từ (1) và (2) suy ra MN là đường trung trực của AH

Xét ΔABC có 

M là trung điểm của AB

E là trung điểm của BC

Do đó: ME là đường trung bình

=>ME=AC/2

mà HN=AC/2

nên ME=HN

Xét tứ giác MNEH có MN//EH

nên MNEH là hình thang

mà ME=NH

nên MNEH là hình thang cân

a: Xét tứ giác BMDH có

gócc BMD+góc BHD=180 độ

=>BMDH là tứ giác nội tiếp

b: góc AMN+góc OAM

=góc ADN+(180 độ-góc AOB)/2

=90 độ-góc HAC+90 độ-góc AOB/2

=180 độ-(90 độ-góc ACB)-góc ACB

=90 độ

=>MN vuông góc AO

=>MN//tiếp tuyến tại A của (O)

a: Xét ΔABC có

M,N lần lượt là trung điểm của AB và AC

nên MN là đường trung bình

=>MN//BC và MN=BC/2

=>MN//BE và MN=BE

=>BMNE là hình bình hành

b: Ta có: ΔAHB vuông tại H

mà HM là đường trung tuyến

nên HM=AM(1)

Ta có: ΔAHC vuông tại H

mà HN là đường trung tuyến

nên HN=AN(2)

Từ (1)và (2) suy ra AH là đường trung trực của MN

Xét ΔABC có 

E,M lần lượt là trung điểm của CB và BA

nên ME là đường trung bình

=>ME=CA/2=NH

Xét tứ giác MNEH có MN//EH

nên MNEH là hình thang

mà ME=NH

nên MNEH là hình thang cân

a: Xét ΔAHC vuông tại H có sin C=AH/AC

=>AH/8=sin30=1/2

=>AH=4cm

HC=căn AC^2-AH^2=4*căn 3(cm)

b: ΔAHB vuông tại H có  HE là đường cao

nên AE*AB=AH^2

ΔAHC vuông tại H có HF là đường cao

nên AF*AC=AH^2

=>AE*AB=AF*AC

=>AE/AC=AF/AB

Xét ΔAEF và ΔACB có

AE/AC=AF/AB

góc A chung

=>ΔAEF đồng dạng với ΔACB

=>góc AEF=góc ACB

a: Xét tứ giác ADHE có 

\(\widehat{DAE}=\widehat{AEH}=\widehat{ADH}=90^0\)

Do đó: ADHE là hình chữ nhật

Suy ra: AH=DE