K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2022

\(a,lim\left(8n-3n^9+1\right)\)

\(=limn^9\left(\dfrac{8}{n^8}-3+\dfrac{1}{n^9}\right)\)

\(=n^9\left(0-3+0\right)=n^9.\left(-3\right)=\)-∞

 

NV
12 tháng 2 2022

\(\lim\left(6n^4-n+1\right)=\lim n^4\left(6-\dfrac{1}{n^3}+\dfrac{1}{n^4}\right)=+\infty.6=+\infty\)

\(\lim\left(2-3n+7n^2\right)=\lim n^2\left(\dfrac{2}{n^2}-\dfrac{3}{n}+7\right)=+\infty.7=+\infty\)

11 tháng 2 2022

a) lim (6n4 - n + 1) 

= lim n4(6 - 1/n3 + 1/n4) = + \(\infty\)

+ lim n4 = + \(\infty\)

+ lim (6 - 1/n3 + 1/n4) = 6

b) lim (2 - 3n + 7n2)

= lim n2(2/n2 - 3/n + 7) = + \(\infty\)

+ lim n2 = + \(\infty\)

+ lim (2/n2 - 3/n + 7) = 7

AH
Akai Haruma
Giáo viên
12 tháng 2 2022

Lời giải:
\(\lim(-2n^3-5n+9)=\lim n^3(-2-\frac{5}{n^2}+\frac{9}{n^3})\)

Khi \(n\to +\infty\Rightarrow \lim n^3=+\infty ; \lim (-2-\frac{5}{n^2}+\frac{9}{n^3})=-2<0\) nên \(\lim (-2n^3-5n+9)=-\infty \)

b. Tương tự phần a, \(\lim (8n-3n^9+1)=-\infty \)

NV
7 tháng 2 2021

\(a=\lim4^n\left(1-\left(\dfrac{3}{4}\right)^n\right)=+\infty.1=+\infty\)

\(b=\lim\left(4^n+2.2^n+1-4^n\right)=\lim2^n\left(2+\dfrac{1}{2^n}\right)=+\infty.2=+\infty\)

\(c=limn^3\left(\sqrt{\dfrac{2}{n}-\dfrac{3}{n^4}+\dfrac{11}{n^6}}-1\right)=+\infty.\left(-1\right)=-\infty\)

\(d=\lim n\left(\sqrt{2+\dfrac{1}{n^2}}-\sqrt{3-\dfrac{1}{n^2}}\right)=+\infty\left(\sqrt{2}-\sqrt{3}\right)=-\infty\)

\(e=\lim\dfrac{3n\sqrt{n}+1}{\sqrt{n^2+3n\sqrt{n}+1}+n}=\lim\dfrac{3\sqrt{n}+\dfrac{1}{n}}{\sqrt{1+\dfrac{3}{\sqrt{n}}+\dfrac{1}{n^2}}+1}=\dfrac{+\infty}{2}=+\infty\)

22 tháng 3 2022

undefined

NV
10 tháng 1 2021

\(\lim\dfrac{\left(2n-1\right)\left(3n^2+2\right)^3}{-2n^5+4n^3-1}=\lim\dfrac{\left(\dfrac{2n-1}{n}\right)\left(\dfrac{3n^2+2}{n^2}\right)^3}{\dfrac{-2n^5+4n^3-1}{n^7}}\)

\(=\lim\dfrac{\left(2-\dfrac{1}{n}\right)\left(3+\dfrac{2}{n^2}\right)^3}{-\dfrac{2}{n^2}+\dfrac{4}{n^4}-\dfrac{1}{n^7}}=-\infty\)

\(\lim3^n\left(6.\left(\dfrac{2}{3}\right)^n-5+\dfrac{7n}{3^n}\right)=+\infty.\left(-5\right)=-\infty\)

NV
6 tháng 2 2021

\(a=\lim\dfrac{1}{\sqrt{4n+1}+2\sqrt{n}}=\dfrac{1}{\infty}=0\)

\(b=\lim n\left(\sqrt{1+\dfrac{2}{n}}-\sqrt{1-\dfrac{2}{n}}-1\right)=+\infty.\left(-1\right)=-\infty\)

\(c=\lim4^n\left(\sqrt{\left(\dfrac{9}{16}\right)^n-\left(\dfrac{3}{16}\right)^n}-1\right)=+\infty.\left(-1\right)=-\infty\)

\(d=\lim n^3\left(3+\dfrac{2}{n}+\dfrac{1}{n^2}\right)=+\infty.3=+\infty\)

6 tháng 2 2021

thưa thầy câu 1 nếu rút căn n ra thì lm thế nào ạ

NV
13 tháng 2 2022

\(\lim\left(3n-\sqrt{9n^2+1}\right)=\lim\dfrac{-1}{3n+\sqrt{9n^2+1}}=\lim\dfrac{-\dfrac{1}{n}}{3+\sqrt{9+\dfrac{1}{n^2}}}=\dfrac{0}{3+3}=0\)

\(\lim\left(\sqrt[3]{n^3-2n^2}-n\right)=\lim\dfrac{-2n^2}{\sqrt[3]{\left(n^3-2n^2\right)^2}+n\sqrt[3]{n^3-2n^2}+n^2}\)

\(=\lim\dfrac{-2}{\sqrt[3]{\left(1-\dfrac{2}{n}\right)^2}+\sqrt[3]{1-\dfrac{2}{n}}+1}=\dfrac{-2}{1+1+1}=-\dfrac{2}{3}\)

16 tháng 2 2021

a/ Bạn coi lại đề bài, 3n^2 +n^2 thì bằng 4n^2 luôn chứ ko ai cho đề bài như vậy cả

b/ \(\lim\limits\dfrac{\dfrac{n^3}{n^3}+\dfrac{3n}{n^3}+\dfrac{1}{n^3}}{-\dfrac{n^3}{n^3}+\dfrac{2n}{n^3}}=-1\)

c/ \(=\lim\limits\dfrac{-\dfrac{2n^3}{n^2}+\dfrac{3n}{n^2}+\dfrac{1}{n^2}}{-\dfrac{n^2}{n^2}+\dfrac{n}{n^2}}=\lim\limits\dfrac{-2n}{-1}=+\infty\)

d/ \(=\lim\limits\left[n\left(1+1\right)\right]=+\infty\)

e/ \(\lim\limits\left[2^n\left(\dfrac{2n}{2^n}-3+\dfrac{1}{2^n}\right)\right]=\lim\limits\left(-3.2^n\right)=-\infty\)

f/ \(=\lim\limits\dfrac{4n^2-n-4n^2}{\sqrt{4n^2-n}+2n}=\lim\limits\dfrac{-\dfrac{n}{n}}{\sqrt{\dfrac{4n^2}{n^2}-\dfrac{n}{n^2}}+\dfrac{2n}{n}}=-\dfrac{1}{2+2}=-\dfrac{1}{4}\)

g/ \(=\lim\limits\dfrac{n^2+3n-1-n^2}{\sqrt{n^2+3n-1}+n}+\lim\limits\dfrac{n^3-n^3+n}{\sqrt[3]{\left(n^3-n\right)^2}+n.\sqrt[3]{n^3-n}+n^2}\)

\(=\lim\limits\dfrac{\dfrac{3n}{n}-\dfrac{1}{n}}{\sqrt{\dfrac{n^2}{n^2}+\dfrac{3n}{n^2}-\dfrac{1}{n^2}}+\dfrac{n}{n}}+\lim\limits\dfrac{\dfrac{n}{n^2}}{\dfrac{\sqrt[3]{\left(n^3-n\right)^2}}{n^2}+\dfrac{n\sqrt[3]{n^3-n}}{n^2}+\dfrac{n^2}{n^2}}\)

\(=\dfrac{3}{2}+0=\dfrac{3}{2}\)

16 tháng 2 2021

không thích coi rồi sao kh :D 

NV
4 tháng 12 2021

\(\lim\limits\left(2-3n\right)^4\left(n+1\right)^3=\lim n^7\left(3-\dfrac{2}{n}\right)^4\left(1+\dfrac{1}{n}\right)^3=+\infty\)

\(\lim\left(\sqrt[3]{n+4}-\sqrt[3]{n+1}\right)=\lim\dfrac{3}{\sqrt[3]{\left(n+4\right)^2}+\sqrt[3]{\left(n+4\right)\left(n+1\right)}+\sqrt[3]{\left(n+1\right)^2}}=0\)

\(\lim\left(\sqrt[3]{8n^3+3n^2+4}-2n+6\right)=\lim\dfrac{8n^3+3n^2+4-\left(2n-6\right)^3}{\sqrt[3]{\left(8n^3+3n^2+4\right)^2}+\left(2n-6\right)\sqrt[3]{8n^3+3n^2+4}+\left(2n-6\right)^2}\)

\(=\lim\dfrac{75n^2-216n+220}{\sqrt[3]{\left(8n^3+3n^2+4\right)^2}+\left(2n-6\right)\sqrt[3]{8n^3+3n^2+4}+\left(2n-6\right)^2}\)

\(=\lim\dfrac{75-\dfrac{216}{n}+\dfrac{220}{n^2}}{\sqrt[3]{\left(8+\dfrac{3}{n}+\dfrac{4}{n^3}\right)^2}+\left(2-\dfrac{6}{n}\right)\sqrt[3]{8+\dfrac{3}{n}+\dfrac{4}{n^3}}+\left(2-\dfrac{6}{n}\right)^2}\)

\(=\dfrac{75}{\sqrt[3]{8^2}+2.\sqrt[3]{8}+2^2}=...\)

NV
4 tháng 12 2021

d.

\(\lim\left(\sqrt[3]{8n^3+3n^2-2}+\sqrt[3]{5n^2-8n^3}\right)\)

\(=\lim\left(\sqrt[3]{8n^3+3n^2-2}-\sqrt[3]{8n^3-5n^2}\right)\)

\(=\lim\dfrac{8n^3+3n^2-2-\left(8n^3-5n^2\right)}{\sqrt[3]{\left(8n^3+3n^2-2\right)^2}+\sqrt[3]{\left(8n^3+3n^2-2\right)\left(8n^3-5n^2\right)}+\sqrt[3]{8n^3-5n^2}}\)

\(=\lim\dfrac{8n^2-2}{\sqrt[3]{\left(8n^3+3n^2-2\right)^2}+\sqrt[3]{\left(8n^3+3n^2-2\right)\left(8n^3-5n^2\right)}+\sqrt[3]{8n^3-5n^2}}\)

\(=lim\dfrac{8-\dfrac{2}{n^2}}{\sqrt[3]{\left(8+\dfrac{3}{n}-\dfrac{2}{n^3}\right)^2}+\sqrt[3]{\left(8+\dfrac{3}{n}-\dfrac{2}{n^3}\right)\left(8-\dfrac{5}{n}\right)}+\sqrt[3]{\left(8-\dfrac{5}{n}\right)^2}}\)

\(=\dfrac{8}{\sqrt[3]{8^2}+\sqrt[3]{8.8}+\sqrt[3]{8^2}}=...\)