K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABE và ΔDBE có

BA=BD

\(\widehat{ABE}=\widehat{DBE}\)

BE chung

Do đó: ΔABE=ΔDBE

Suy ra: \(\widehat{BAE}=\widehat{BDE}=90^0\)

b: Xét ΔAEF vuông tại A và ΔDEC vuông tại D có

EA=ED

\(\widehat{AEF}=\widehat{DEC}\)

Do đó: ΔAEF=ΔDEC

c: Xét ΔEFC có EF=EC

nên ΔEFC cân tại E

d: Ta có: ΔAEF=ΔDEC

nên AF=DC

Ta có: BA+AF=BF

BD+DC=BC

mà BA=BD

và AF=DC

nên BF=BC

hay B nằm trên đường trung trực của CF(1)

Ta có: EF=EC

nên E nằm trên đường trung trực của CF(2)

Ta có: NF=NC

nên N nằm trên đường trung trực của CF(3)

Từ (1), (2) và (3) suy ra B,E,N thẳng hàng

a) Xét ΔABE và ΔDBE có 

BA=BD(gt)

\(\widehat{ABE}=\widehat{DBE}\)(BE là tia phân giác của \(\widehat{ABD}\))

BE chung

Do đó: ΔABE=ΔDBE(c-g-c)

Suy ra: \(\widehat{BAE}=\widehat{BDE}\)(hai góc tương ứng)

mà \(\widehat{BAE}=90^0\)(ΔABC vuông tại A)

nên \(\widehat{BDE}=90^0\)

Vậy: \(\widehat{BDE}=90^0\)

b) Ta có: ΔBAE=ΔBDE(cmt)

nên EA=ED(Hai cạnh tương ứng)

Xét ΔAEF vuông tại A và ΔDEC vuông tại D có

EA=ED(cmt)

\(\widehat{AEF}=\widehat{DEC}\)(hai góc đối đỉnh)

Do đó: ΔAEF=ΔDEC(cạnh góc vuông-góc nhọn kề)

c) Ta có: ΔAEF=ΔDEC(cmt)

nên EF=EC(hai cạnh tương ứng)

Xét ΔEFC có EF=EC(cmt)

nên ΔEFC cân tại E(Định nghĩa tam giác cân)

21 tháng 2 2021

cảm ơn 

 

3 tháng 12 2021

1) Xét tam giác ABE và tam giác DBE có:

+ BM chung.

+ AB = DB (gt).

+ ^ABE = ^DBE (do BE là phân giác ^ABD).

=> Tam giác ABE = Tam giác DBE (c - g - c).

2) Xét tam giác ABD có: BA = BD (Tam giác ABE = Tam giác DBE).

=> Tam giác ABD cân tại B.

Mà BE là phân giác ^ABD (gt).

=> BE là đường cao (Tính chất các đường trong tam giác cân).

Lại có: BE cắt AD tại M (gt).

=> BE vuông góc AD tại M (đpcm).

3) Xét tam giác FBC có: 

+ BN là trung tuyến (do N là trung điểm của CF).

+ BN là phân giác của ^FBC (do BE là phân giác ^ABD).

=> Tam giác FBC cân tại B.

=> BN là đường cao (Tính chất các đường trong tam giác cân).

=> BN vuông góc FC. (1)

Vì tam giác FBC cân tại B (cmt). => ^BCF = (180- ^DBA) : 2.

Vì tam giác ABD cân tại B (cmt). => ^BDA = (180- ^DBA) : 2.

=> ^BCF = ^BDA.

Mà 2 góc này ở vị trí đồng vị.

=> AD // FC (dhnb).

Mà BE vuông góc với AD tại M (cmt).

=> BE vuông góc FC. (2)

Từ (1) và (2) => 3 điểm B, E, N thẳng hàng (đpcm). 

a: Xét ΔBAE vuông tại A và ΔBDE vuông tại D co

BE chung

BA=BD

=>ΔBAE=ΔBDE

b: BA=BD

EA=ED

=>BE là trung trực của AD

c: Xét ΔBDM vuông tại D và ΔBAC vuông tại A có

BD=BA

góc B chung

=>ΔBDM=ΔBAC

=>BM=BC

=>ΔBMC cân tại B

16 tháng 5 2023

Cảm ơn nhiềuu ạ yeu

28 tháng 12 2021

Bài 1: 

a: Xét ΔABE và ΔDBE có

BA=BD

\(\widehat{ABE}=\widehat{DBE}\)

BE chung

Do đó: ΔABE=ΔDBE

19 tháng 6 2017

a) Áp dụng định lí Pi - ta - go cho tam giác ABC vuông tại A có :

AB^2+AC^2 =BC^2hay AC^2=15^2-9^2=144 hay AC=12

b)Xét tam giác ABE và DBE có :

     Góc A=góc B(=90 độ)

     BA=BD(gt)

     Chung cạnh BE

suy ra tam giác ABE= BDE (c.g.c)

c) Từ tam giác ABE=BDE(cm ở ý b) suy ra góc ABE = góc DBE (2 góc tương ứng )

            Suy ra BE là tia phân giác cua góc ABC

Xét tam giác BDK và BAC có :

       Chung góc B

       BA=BD(gt)

       góc D = góc A (=90 độ)

suy ra tam giác BDK=tam giác BAC (g.c.g)

suy ra AC=DK (2 cạnh tương ứng ) 

                  ( Mình chỉ làm được ý a,b,c thôi , mình ngại vẽ hình . Nếu đúng kết bạn với mình nhé )

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

BA=BE

=>ΔBAD=ΔBED

b: ΔBAD=ΔBED

=>góc ABD=góc EBD

=>BD là phân giác của góc ABE

c: Xét ΔBEM vuông tại E và ΔBAC vuôg tại A có

BE=BA

góc EBM chung

=>ΔBEM=ΔBAC

=>BM=BC

3 tháng 5 2020

A B C D F E

a) Vì tam giác BAC vuông tại A 

=> AB^2 + AC^2 = BC^2 ( đl pytago )

=> BC^2 = 5^2 + 7^2 = 74

=> BC = căn bậc 2 của 74

b) 

 Xét tam giác ABE; tam giác DBE có :

AB = DB ( gt)

góc ABE = góc DBE ( gt)

BE chung

=> tam giác ABE = tam giác DBE (c.g.c) - đpcm

c)

Vì tam giác ABE = tam giác DBE (câu b)

=> AE = DE

Xét tg AEF ⊥ tại A; tg DEC ⊥ tại D:

AE = DE (c/m trên)

g AEF = g DEC (đối đỉnh)

=> tg AEF = tg DEC (cgv - gn) - đpcm

=> EF = EC 

d)

Do tam giác AEF = tam giác DEC (câu c)

=> AE = DE

=> E ∈ đường trung trực của AD (1)

Lại do AB = BD (gt)

=> B ∈ đường trung trực của AD (2)

Từ (1) và (2) => BE là đường trung trực của AD. - đpcm