Bài 1: Cho A = . So sánh A với
Bài 2: Tính B =
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bai 1 : ta có a+b+c=0=>(a+b+c)^2=0
=>a^2+b^2+c^2+2ab+2ac+2bc=0
=>1+2(ab+bc+ac)=0(vì a^2+b^2+c^2=1)
=>ab+bc+cd=-1/2
=>(ab+bc+cd)^2=1/4
=>a^2b^2+a^2c^2+b^2c^2+2a^2bc+2ab^2c+2abc^2=1/4
=>a^2b^2+a^2c^2+b^2c^2+2abc(a+b+c)=1/4
=>a^2b^2 +a^2c^2+b^2c^2=1/4(vì a+b+c=0)*
mặt khác a^2+b^2+c^2=1(gt)
=>(a^2+b^2+c^2)^2=1
=>a^4+b^4+c^4+2a^2b^2+2a^2c^2+2b^2c^2=1
=>a^4+b^4+c^4+2(a^2b^2+a^2c^2+b^2c^2)=1
=>a^4+b^4+c^4+2.1/4=1(theo *)
=>a^4+b^4+c^4=1- 1/2=1/2(dpcm)
mk chi giai dc nhu v thoi
Bài 1
a) S = 1 + 2 + 2² + 2³ + ... + 2²⁰²³
2S = 2 + 2² + 2³ + 2⁴ + ... + 2²⁰²⁴
S = 2S - S = (2 + 2² + 2³ + ... + 2²⁰²⁴) - (1 + 2 + 2² + 2³)
= 2²⁰²⁴ - 1
b) B = 2²⁰²⁴
B - 1 = 2²⁰²⁴ - 1 = S
B = S + 1
Vậy B > S
a,
\(S=1+2+2^2+...+2^{2023}\)
\(2S=2+2^2+2^3+...+2^{2024}\)
\(\Rightarrow S=2^{2024}-1\)
b.
Do \(2^{2024}-1< 2^{2024}\)
\(\Rightarrow S< B\)
2.
\(H=3+3^2+...+3^{2022}\)
\(\Rightarrow3H=3^2+3^3+...+3^{2023}\)
\(\Rightarrow3H-H=3^{2023}-3\)
\(\Rightarrow2H=3^{2023}-3\)
\(\Rightarrow H=\dfrac{3^{2023}-3}{2}\)
Bài 4:
a: xy=-2
=>\(x\cdot y=1\cdot\left(-2\right)=\left(-2\right)\cdot1=\left(-1\right)\cdot2=2\cdot\left(-1\right)\)
=>\(\left(x,y\right)\in\left\{\left(1;-2\right);\left(-2;1\right);\left(-1;2\right);\left(2;-1\right)\right\}\)
b: \(\left(x-1\right)\left(y+2\right)=-3\)
=>\(\left(x-1\right)\cdot\left(y+2\right)=1\cdot\left(-3\right)=\left(-3\right)\cdot1=-1\cdot3=3\cdot\left(-1\right)\)
=>\(\left(x-1;y+2\right)\in\left\{\left(1;-3\right);\left(-3;1\right);\left(-1;3\right);\left(3;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(2;-5\right);\left(-2;-1\right);\left(0;1\right);\left(4;-3\right)\right\}\)
Bài 3:
a: \(x\left(x+9\right)=0\)
=>\(\left[{}\begin{matrix}x=0\\x+9=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=0\\x=-9\end{matrix}\right.\)
b: \(\left(x-5\right)^2=9\)
=>\(\left[{}\begin{matrix}x-5=3\\x-5=-3\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=3+5=8\\x=-3+5=2\end{matrix}\right.\)
c: \(\left(7-x\right)^2=-64\)
mà \(\left(7-x\right)^2>=0\forall x\)
nên \(x\in\varnothing\)
Bài 2:
a: \(\left(-31\right)\cdot x=-93\)
=>\(31\cdot x=93\)
=>\(x=\dfrac{93}{31}=3\)
b: \(\left(-4\right)\cdot x=-20\)
=>\(4\cdot x=20\)
=>\(x=\dfrac{20}{4}=5\)
c: \(5x+1=-4\)
=>\(5x=-4-1=-5\)
=>\(x=-\dfrac{5}{5}=-1\)
d: \(-12x+1=-4\)
=>\(-12x=-4-1=-5\)
=>\(12x=5\)
=>\(x=\dfrac{5}{12}\)
a,\(A=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{100}}\)
\(=>5A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\)
\(=>5A-A=1-\frac{1}{5^{100}}=>A=\frac{1-\frac{1}{5^{100}}}{4}\)
b, Ta có \(1-\frac{1}{5^{100}}< 1=>\frac{1-\frac{1}{5^{100}}}{4}< \frac{1}{4}\)hay \(A< \frac{1}{4}\)
Còn không có đè