Tổng các bình phương của hai số x, y nhân với hai lần tích của hai số đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (x-y)2
b) (x-y)3
c) x+5y
d) x.(4+y)
e) (2k+1)2+(2k+3)2
sorry nha mình chỉ bt đến đây thôi
\(a)\) Tổng các bình phương của hai số \(a\) và \(b\) \(:\) \(a^2 + b^2\)
\(b)\) Tổng của hai lần bình phương số \(a\) và số \(b :\) \(2(a^2 + b^2 )\)
\(c)\) Tổng của \(x\) bình phương và \(y\) lập phương \(: x^2+y^3\)
\(d) \) Nửa tổng các bình phương của hai số \(a\) và \(b :\) \(\dfrac{a^2+b^2}{2}\)
ab
trong hệ tp ab=10a+b
theo bài có pt
10a+b=a^2+b^2-11
10a+b=2a.b+5
giải hệ trên
với 0<a<=9, 0<=b<=9
(1-2)=>(a-b)^2=16=>a-b=+-4
=>b=a+-4
thay vào (2)
10a+a+-4=2a^2+-8+5
2a^2-11a+-4+5=0
•2a^2-11a+1=0 loại a không nguyên
•2a^2-11a+9=0
a=(11+-7)/4
a=18/4 loại
a=1 nhận
b=5
đáp số
15
ab
trong hệ tp ab=10a+b
theo bài có pt
10a+b=a^2+b^2-11
10a+b=2a.b+5
giải hệ trên
với 0<a<=9, 0<=b<=9
(1-2)=>(a-b)^2=16=>a-b=+-4
=>b=a+-4
thay vào (2)
10a+a+-4=2a^2+-8+5
2a^2-11a+-4+5=0
•2a^2-11a+1=0 loại a không nguyên
•2a^2-11a+9=0
a=(11+-7)/4
a=18/4 loại
a=1 nhận
b=5
đáp số: 15
a) \(x^2+y^2\)
b) \(\dfrac{\left(x-y\right)^3}{x+y}\)
Gọi số cần tìm là ab (đk)
Theo đề bài ta có hpt:
\(\hept{\begin{cases}10a+b=a^2+b^2-11\\10a+b=2ab+5\end{cases}}\)\(\Rightarrow2ab+5=a^2+b^2-11\)
\(\Leftrightarrow a^2+b^2-2ab=16\)
\(\Leftrightarrow\left(a-b\right)^2=16\Rightarrow\orbr{\begin{cases}a-b=4\\a-b=-4\end{cases}}\)
TH1: Nếu a = b+4\(\Rightarrow10\left(b+4\right)+b=2\left(b+4\right)b+5\)
\(\Leftrightarrow3b+35-2b^2=0\)\(\Leftrightarrow\left(7+2b\right)\left(b-5\right)=0\Rightarrow b=5\Rightarrow a=9\)
TH2: Nếu a = -4+b\(\Rightarrow10\left(-4+b\right)+b=2\left(b-4\right)b+5\)
\(\Leftrightarrow-45+19b-2b^2=0\Leftrightarrow\left(b-5\right)\left(-2b+9\right)=0\)\(\Rightarrow b=5\Rightarrow a=1\)
Vậy số cần tìm là 95 và 15
(x2+y2)2
Bạn lớp 6 sao làm được lớp 7