Cho tam giác ABC có góc A vuông và cạnh AB=30cm.M,N lần lượt là trung điểm các cạnh AC và AB.Đoạn thẳng BM cắt đoạn thẳng CN ở O
a;So sánh diện tích tam giác AON và COM
b;Tính đọ dài đường cao hạ từ O của tam giác AOC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ A kẻ đường phân giác nối A với D⇒∠A1=∠A2
Xét ΔAMD và ΔAND có:
∠A1=∠A2 (cmt)
AD chung
∠AMB=∠AND(=90độ)
⇒ ΔAMD=ΔAND(ch-gn)
⇒ MD=DC (2 cạnh tương ứng)
Xét ΔBMD và ΔCND có:
BD=DC(gt)
∠BMD=∠CND(=90độ)
MD=DN(cmt)
⇒ ΔBMD=ΔCND(ch-cgv)
⇒ MB=NC (2 cạnh tương ứng)
Khi lên lớp 7, em sẽ được học tính nhất \(OA=\frac{2}{3}AM\)
Sau đây cô chứng minh tính chất đó nhờ vào tỉ số diện tích để các em học sinh lớp dưới có thể hiểu được.
Hình vẽ như sau:
Ta thấy tam giác ANO và ONM có chung chiều cao nên \(\frac{S_{ANO}}{S_{ONM}}=\frac{AO}{OM}\)
Tương tự \(\frac{S_{AOC}}{S_{ONC}}=\frac{AO}{OM}\)
Vậy thì \(\frac{S_{AMC}}{S_{MNC}}=\frac{S_{AMO}+S_{AOC}}{S_{OMN}+S_{ONC}}=\frac{OA}{OM}\)
Lại có \(\frac{S_{AMC}}{S_{ABC}}=\frac{1}{2};\frac{S_{MNC}}{S_{ABC}}=\frac{1}{4}\Rightarrow\frac{S_{AMC}}{S_{MNC}}=2\)
Vậy thì \(\frac{AO}{OM}=2\Rightarrow\frac{AO}{AM}=\frac{2}{3}\Rightarrow AO=16cm.\)