K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2020

Từ A kẻ đường phân giác nối A với D⇒∠A1=∠A2

       Xét ΔAMD và ΔAND có:

            ∠A1=∠A2 (cmt)

            AD chung

            ∠AMB=∠AND(=90độ)

⇒ ΔAMD=ΔAND(ch-gn)

⇒ MD=DC (2 cạnh tương ứng)

       Xét ΔBMD và ΔCND có:

              BD=DC(gt)

              ∠BMD=∠CND(=90độ)

              MD=DN(cmt)

⇒ ΔBMD=ΔCND(ch-cgv)

⇒ MB=NC (2 cạnh tương ứng)

21 tháng 9 2018

Bạn vẽ hình lên đi, rồi mình giải cho

21 tháng 9 2018

Bạn kham khảo bài của bạn vũ tiền châu tại link:

Câu hỏi của Nhóc vậy - Toán lớp 9 - Học toán với OnlineMath

31 tháng 5 2019

bạn chỉ mình câu a với

24 tháng 7 2017

Khi lên lớp 7, em sẽ được học tính nhất \(OA=\frac{2}{3}AM\)

Sau đây cô chứng minh tính chất đó nhờ vào tỉ số diện tích để các em học sinh lớp dưới có thể hiểu được.

Hình vẽ như sau:

A B C N M O  

Ta thấy tam giác ANO và ONM có chung chiều cao nên \(\frac{S_{ANO}}{S_{ONM}}=\frac{AO}{OM}\)

Tương tự \(\frac{S_{AOC}}{S_{ONC}}=\frac{AO}{OM}\)

Vậy thì \(\frac{S_{AMC}}{S_{MNC}}=\frac{S_{AMO}+S_{AOC}}{S_{OMN}+S_{ONC}}=\frac{OA}{OM}\)

Lại có \(\frac{S_{AMC}}{S_{ABC}}=\frac{1}{2};\frac{S_{MNC}}{S_{ABC}}=\frac{1}{4}\Rightarrow\frac{S_{AMC}}{S_{MNC}}=2\)

Vậy thì \(\frac{AO}{OM}=2\Rightarrow\frac{AO}{AM}=\frac{2}{3}\Rightarrow AO=16cm.\)