Tìm các số a,b,c,d \(\in\) N biết:
\(\frac{13}{43}=\frac{1}{a+\frac{1}{b+\frac{1}{c+\frac{1}{d}}}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{30}{43}=\frac{1}{\frac{43}{30}}=\frac{1}{1+\frac{13}{30}}=\frac{1}{1+\frac{1}{2+\frac{4}{13}}}=\frac{1}{1+\frac{1}{2+\frac{1}{3+\frac{1}{4}}}}\)
Vậy a = 1,b = 2,c = 3,d = 4
Ta có :
\(\frac{30}{43}=\frac{1}{\frac{43}{30}}=\frac{1}{1+\frac{13}{30}}=\frac{1}{1+\frac{1}{\frac{30}{13}}}=\frac{1}{1+\frac{1}{2+\frac{4}{13}}}=\frac{1}{1+\frac{1}{2+\frac{1}{\frac{13}{4}}}}=\frac{1}{1+\frac{1}{2+\frac{1}{3+\frac{1}{4}}}}\)
Vậy \(a=1;b=2;c=3;d=4\)
Ta có: \(\frac{30}{43}=\frac{1}{\frac{43}{30}}=\frac{1}{1+\frac{13}{30}}=\frac{1}{1+\frac{1}{2+\frac{4}{13}}}=\frac{1}{1+\frac{1}{2+\frac{1}{3+\frac{1}{4}}}}\)
\(\Rightarrow\)a = 1 ; b = 2 ; c = 3 ; d = 4
Vậy:
a = 1 ; b = 2 ; c = 3 ; d = 4
\(\frac{30}{43}=\frac{1}{a+\frac{1}{b+\frac{1}{c+\frac{1}{d}}}}\)\(\Rightarrow\frac{1}{\frac{43}{30}}=\frac{1}{a+\frac{1}{b+\frac{1}{c+\frac{1}{d}}}}\)
\(\Rightarrow\frac{1}{1+\frac{13}{30}}=\frac{1}{a+\frac{1}{b+\frac{1}{c+\frac{1}{d}}}}\)\(\Rightarrow\frac{1}{1+\frac{1}{\frac{30}{13}}}=\frac{1}{a+\frac{1}{b+\frac{1}{c+\frac{1}{d}}}}\)\(\Rightarrow\frac{1}{1+\frac{1}{2+\frac{4}{13}}}=\frac{1}{a+\frac{1}{b+\frac{1}{c+\frac{1}{d}}}}\)\(\Rightarrow\frac{1}{1+\frac{1}{2+\frac{1}{\frac{13}{4}}}}=\frac{1}{a+\frac{1}{b+\frac{1}{c+\frac{1}{d}}}}\)\(\Rightarrow\frac{1}{1+\frac{1}{2+\frac{1}{3+\frac{1}{4}}}}=\frac{1}{a+\frac{1}{b+\frac{1}{c+\frac{1}{d}}}}\)
\(\Rightarrow a=1,b=2,c=3,d=4\)
\(\frac{30}{43}=\frac{1}{a+\frac{1}{b+\frac{1}{c+\frac{1}{d}}}}\)\(\Rightarrow\frac{1}{\frac{43}{30}}=\frac{1}{a+\frac{1}{b+\frac{1}{c+\frac{1}{d}}}}\)
\(\Rightarrow\frac{1}{1+\frac{13}{30}}=\frac{1}{a+\frac{1}{b+\frac{1}{c+\frac{1}{d}}}}\)\(\Rightarrow\frac{1}{1+\frac{1}{\frac{30}{13}}}=\frac{1}{a+\frac{1}{b+\frac{1}{c+\frac{1}{d}}}}\)
\(\Rightarrow\frac{1}{1+\frac{1}{2+\frac{4}{13}}}=\frac{1}{a+\frac{1}{b+\frac{1}{c+\frac{1}{d}}}}\)\(\Rightarrow\frac{1}{1+\frac{1}{2+\frac{1}{\frac{13}{4}}}}=\frac{1}{a+\frac{1}{b+\frac{1}{c+\frac{1}{d}}}}\)
\(\Rightarrow\frac{1}{1+\frac{1}{2+\frac{1}{3+\frac{1}{4}}}}=\frac{1}{a+\frac{1}{b+\frac{1}{c+\frac{1}{d}}}}\)
\(\Rightarrow a=1,b=2,c=3,d=4\)