K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2023

Gọi số dãy ghế dự định lúc đầu là \(x\) (dãy)

ĐK: \(x>20;x\in\mathbb N^*\)

Số ghế trong một dãy dự định lúc đầu là: \(\dfrac{120}{x}\) (ghế)

Thực tế số người tham dự là 160 và số dãy ghế là: \(x+2\)

⇒ Số ghế trong một dãy là: \(\dfrac{160}{x+2}\) (ghế)

Vì thực tế mỗi dãy ghế phải kê thêm 1 ghế so với dự định nên ta có pt:

\(\dfrac{160}{x+2}-\dfrac{120}{x}=1\)

.... (Tự giải pt)

\(\Leftrightarrow x^2-38+240=0\)

\(\Leftrightarrow\left(x-8\right)\left(x-30\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=8\left(\text{loại}\right)\\x=30\left(\text{TM}\right)\end{matrix}\right.\)

Vậy số dãy ghế dự định lúc đầu là 30 dãy ghế.

DD
23 tháng 7 2021

Gọi số dãy ghế lúc đầu của phòng họp là \(x\)(dãy) \(x\inℕ^∗,x>20\).

Số ghế trên mỗi dãy lúc đầu là: \(\frac{120}{x}\)(ghế) 

Thực tế có số dãy ghế là: \(x+2\)(dãy) 

Mỗi dãy có số ghế là: \(\frac{120}{x}+1\)(ghế)

Ta có phương trình: 

\(\left(x+2\right)\left(\frac{120}{x}+1\right)=160\)

\(\Leftrightarrow120+\frac{240}{x}+x+2=160\)

\(\Leftrightarrow\orbr{\begin{cases}x=8\left(l\right)\\x=30\left(tm\right)\end{cases}}\)

18 tháng 5 2017

ai chỉ mình với đang cần gấp nha 

càm ơn nhiều

27 tháng 12 2017

Gọi số dãy ghế theo dự định là x(dãy) (x>20)
=> Mổi dãy có 120x120x (ghế)
Số dãy ghế lúc sau là x+2 (dãy)
=> Mổi dãy có 160x+2160x+2 (ghế)

Vì số ghế ở mỗi dãy lúc sau nhiều hơn lúc đầu là 1(ghế) nên ta có pt:
160x+2160x+2 -120x120x =1
↔↔ x2x2 -38x+240=0
↔↔ \left[\begin{x=30}\\{x=8}\left[\begin{x=30}\\{x=8}
KL : Vì số dãy lớn hơn 20 nên số dãy ghế trong phòng họp lúc đầu là 30(dãy)

30 tháng 5 2019

Gọi số dãy ghế lúc dự định họp là x thì số dãy ghế khi họp chính thức là x+2
(X>20)
mỗi dãy dự định có 120/x ghế mỗi dãy ghế khi dự hợp là 160/x+2
theo đề ta có PT: 160/x+2-120/x=1
Sau khi giải tìm dc 2 nghiệm là 30 và 8 chọn 30 do điều kiện là X>20
vậy số dãy ghê ban đầu là 30

~T.I.C.K  NHA~

30 tháng 5 2019

Trả lời:

Số ghế ban đầu là 30 nhá.

Học tốt ~

2 tháng 6 2021

Gọi số ghế ở mỗi hàng ban đầu là x (ghế, x > 0)
Gọi số hàng ghế trong phòng ban đầu là y (hàng, y < 50)
Ta có x nhân y = 240
Khi tăng số ghế và số hàng ta có (x + 1)(y + 3)= 315
Ta có hệ phương trình {x nhân y= 240
                                     {y + 3x = 72
Giải hệ phương trình ta có y= 12; x= 20
Vậy số dãy ghế có trong phòng lúc đầu là 12 hàng.

2 tháng 6 2021

12 hàng

9 tháng 5 2018

Gọi số dãy ghế có trong phòng họp lúc đầu là x (x<50)

Lúc đầu mỗi dãy có \(\frac{240}{x}\)ghế

Vì lúc sau có 315 người tham dự nên phải kê thêm 3 dãy, mỗi dãy thêm 1 ghế

=> \(\left(\frac{240}{x}+1\right)\left(x+3\right)=315\Leftrightarrow240+\frac{720}{x}+x+3=315\)

\(\Leftrightarrow x-72+\frac{720}{x}=0\Leftrightarrow\frac{x^2-72x+720}{x}=0\Leftrightarrow x^2-72x+720=0\)

\(\Delta'=\left(-36\right)^2-720=576\)

=> x1= 60 (Loại), x2=12 (thỏa mãn)

Vậy trong phòng họp lúc đầu có 12 dãy ghế. 

23 tháng 5 2018

Gọi số ghế ở mỗi hàng ban đầu là x (ghế, x > 0)
Gọi số hàng ghế trong phòng ban đầu là y (hàng, y < 50)
Ta có x nhân y = 240
Khi tăng số ghế và số hàng ta có (x + 1)(y + 3)= 315
Ta có hệ phương trình {x nhân y= 240
                                     {y + 3x = 72
Giải hệ phương trình ta có y= 12; x= 20
Vậy số dãy ghế có trong phòng lúc đầu là 12 hàng.

Gọi số dãy ghế có trong phòng họp lúc đầu là x (x<50)

Lúc đầu mỗi dãy có 240xghế

Vì lúc sau có 315 người tham dự nên phải kê thêm 3 dãy, mỗi dãy thêm 1 ghế

=> (240x+1)(x+3)=315⇔240+720x+x+3=315

⇔x−72+720x=0⇔x2−72x+720x=0⇔x2−72x+720=0

Δ′=(−36)2−720=576

=> x1= 60 (Loại), x2=12 (thỏa mãn)

Vậy trong phòng họp lúc đầu có 12 dãy ghế. 

10 tháng 6 2017

Cách 2:
Gọi x là số dãy ghế lúc đầu (Đk:x  và  x là ước của 250, dãy)
Số chỗ ngồi ở mỗi dãy lúc đầu: 250/x (chỗ)
Số dãy ghế lúc sau là x + 3 (dãy). Số chỗ ngồi lúc sau: 308/(x+3) (chỗ).
Vì mỗi dãy ghế phải kê thêm 1 chỗ ngồi nữa thì vừa đủ ta có PT:
 308/(x+3)-250/x=1↔x^2-55x+750=0↔[█(x_1=30 (loại)  vì 250 không chia hết cho 30@x_2=25 (nhận))┤ 
Vậy lúc đầu có 25 dãy ghế. Mỗi dãy ghế có 10 chỗ ngồi.

10 tháng 6 2017

Cách 1:

Gọi x là số dãy ghế lúc đầu; y là số người trên mỗi dãy ghế lúc đầu (x,y>0) 
Ta có tổng cộng 250 người nên x.y =250 (1) 
Nếu thêm 3 dãy ghế tức x + 3 thì mỗi dãy còn lại phải xếp thêm 1 người tức y + 1
Ta có: (x+3).(y+1) = 250 (2) 
Từ (1) và (2) ta có hệ:

 

Vậy lúc đầu có 25 dãy ghế. Mỗi dãy ghế có 10 chỗ ngồi.