999+100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(1.2+2.3+3.4+...+19.20\)
\(=\dfrac{20.\left(20+1\right).\left(20+2\right)}{3}\)
\(=3080\)
b) \(9+99+999+...+999...9\left(100so9\right)\)
\(\)\(=\left(10-1\right)+\left(100-1\right)+\left(1000-1\right)+...+\left(1000...0-1\right)\left(99so0\right)\)
\(=\left(10+10^2+10^3+...10^{99}\right)+\left(-1\right).100\)
\(=\left(1+10+10^2+10^3+...10^{99}\right)+\left(-1\right).101\)
\(=\dfrac{10^{99+1}-1}{99-1}-101\)
\(=\dfrac{10^{100}-1}{98}-101\)
\(=\dfrac{10^{100}-9899}{98}\)
c) \(999.9x222...2\) (100 số 9; 100 số 2)
\(9x2=18\)
\(99x22=2178\)
\(999x222=\text{221778}\)
\(9999x2222=22217778\)
\(99999x22222=2222177778\)
\(.........\)
Theo quy luật trên ta có 100 số 9 nhân 100 số 2:
\(999.9x222...2=222...21777...78\) (99 sô 2; 1 số 1; 99 số 7; 1 số 8)
6666666........666 - 999999.........999
= 666........6666 x (1000......000 - 1) => Đến đây tự tính
giả sử số cuối cùng có n số 9, ta có thể viết lại tổng sau dưới dạng:
(10-1) + (100-1) + (1000-1) + ..... + (10...0 - 1)
= (10mu1 + 10 mũ 2 + .... + 10 mũ n ) - n
trong ngoặc là 1 cấp số nhân với u1 =10 và q =10
vậy, tổng trên sẽ bằng :
10(1 - 10mũ n/ 1 - 10) - n
= (10^n -1)x10/9 - n
mình nha
Gọi số cần tìm là a
Suy ra (a+2) chia hết cho cả 3,4,5,6
Vậy (a+2) là Bội chung của 3,4,5,6
=>(a+2)=60k (với k thuôc N)
vì a chia hết 11 nên
60k chia 11 dư 2
<=>55k+5k chia 11 dư 2
<=>5k chia 11 dư 2
<=>k chia 11 dư 7
=>k=11d+7 (với d thuộc N)
Suy ra số cần tìm là a=60k-2=60(11d+7)-2=660d+418 (với d thuộc N)
Rút gọn
\(\frac{199................999}{999...........995}\)(100 chữ số 9 ở tử và 100 chữ số 9 ở mẫu)
B = 9 + 99 + 999 + ... + 999...99 ( 100 chữ số 9 )
= (10-1) + (102 -1 ) + (103 -1) + .... + (10100 -1)
= 10 + 102 +103 + ......+ 10100 - 100
= 111...11 0 ( 100 chữ số 1 ; 1 chữ số 0 ) - 100
= 1111...1 010 ( 98 chữ số 1 )
số cần tìm là :
999 +100=1099
đáp số :1099
số cần tìm là:
999+100=1099
đáp số:1099