K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
2 tháng 7 2021

\(B=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{\left(2n\right)^2}\)

\(2B=\frac{1}{2^2}+\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{6^2}+...+\frac{1}{\left(2n\right)^2}+\frac{1}{\left(2n\right)^2}\)

\(< \frac{1}{2^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{\left(2n-1\right)^2}+\frac{1}{\left(2n\right)^2}\)

\(< \frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{\left(2n-2\right)\left(2n-1\right)}+\frac{1}{\left(2n-1\right)2n}\)

\(=\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{2n-1}-\frac{1}{2n}\)

\(=1-\frac{1}{2n}< 1\)

Suy ra \(B< \frac{1}{2}\).

2 tháng 12 2017

a) Ta có :

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\)

\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}=1-\frac{1}{n}< 1\)

\(\Rightarrow\)A < 1 

b) \(B=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{\left(2n\right)^2}\)

\(B=\frac{1}{2^2}.\left(1+\frac{1}{2^2}+\frac{1}{3^3}+...+\frac{1}{n^2}\right)\)

vì \(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}< 2-\frac{1}{n}< 2\)

\(\Rightarrow B< \frac{1}{2^2}.2=\frac{1}{2}\)

2 tháng 12 2017

cảm ơn nha!

9 tháng 8 2016

A = 1/42 + 1/62 + 1/82 + ... + 1/(2n)2

A = 1/22.(1/22 + 1/32 + 1/42 + ... + n2)

A < 1/22.(1/1.2 + 1/2.3 + 1/3.4 + ... + 1/(n-1).n

A < 1/4.(1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... +1/n-1 - 1/n)

A < 1/4.(1 - 1/n) < 1/4.1

A < 1/4

7 tháng 4 2023

Ta có :22A=1+\(\dfrac{1}{2^2}\)+\(\dfrac{1}{4^2}\)+...+\(\dfrac{1}{n^2}\)

            22A-A=1-\(\dfrac{1}{\left(2n\right)^2}\)

            3A=\(\dfrac{\left(2n\right)^2-1}{\left(2n\right)^2}\) <\(\dfrac{n^2}{\left(2n\right)^2}\)=\(\dfrac{1}{2}\)

          3A<\(\dfrac{1}{2}\) suy ra A<\(\dfrac{1}{2}\)

6 tháng 4 2023

A   = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{6^2}\)+.......+\(\dfrac{1}{\left(2.n\right)^2}\)

A  =  \(\dfrac{1}{2^2}\) + \(\dfrac{1}{\left(2.2\right)^2}\)\(\dfrac{1}{\left(2.3\right)^2}\) +....+\(\dfrac{1}{\left(2.n\right)^2}\)

A = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{2^2.2^2}\) + \(\dfrac{1}{2^2.3^2}\)+......+ \(\dfrac{1}{2^2.n^2}\)

A = \(\dfrac{1}{2^2}\) \(\times\) ( 1 + \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\)+.......+ \(\dfrac{1}{n^2}\))

22 \(\times\) A = 1 + \(\dfrac{1}{2^2}\)\(\dfrac{1}{3^2}\)+......+\(\dfrac{1}{n^2}\)

     4A =  1 + \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) +......+ \(\dfrac{1}{n^2}\)

     4A = 1 + \(\dfrac{1}{2.2}\) + \(\dfrac{1}{3.3}\) + ...+\(\dfrac{1}{n.n}\)

       1   = 1

     \(\dfrac{1}{2.2}\) < \(\dfrac{1}{1.2}\)

      \(\dfrac{1}{3.3}\) < \(\dfrac{1}{2.3}\)

     ...................

 \(\dfrac{1}{n.n}\) < \(\dfrac{1}{\left(n-1\right).n}\)

Cộng vế với vế ta có: 

4A = 1+\(\dfrac{1}{2.2}\)+\(\dfrac{1}{3.3}\)+....+\(\dfrac{1}{n.n}\) <1+ \(\dfrac{1}{1.2}\)\(\dfrac{1}{2.3}\)+ ......+ \(\dfrac{1}{\left(n-1\right).n}\)

4A < 1+ \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\)\(\dfrac{1}{2}\) - \(\dfrac{1}{3}\)+....+\(\dfrac{1}{n-1}\) - \(\dfrac{1}{n}\) = 2 - \(\dfrac{1}{n}\)

A < ( 2 - \(\dfrac{1}{n}\)): 4 

A < 2 : 4 - \(\dfrac{1}{n}\) : 4

A < \(\dfrac{1}{2}\) - \(\dfrac{1}{4n}\) < \(\dfrac{1}{2}\)

Vậy A < \(\dfrac{1}{2}\) 

 

 

26 tháng 9 2019

Ta có : \(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{\left(2n\right)^2}\)

\(=\frac{1}{2^2}.\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)\)

\(< \frac{1}{4}.\left(1+\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{\left(n-1\right)n}\right)\)

\(=\frac{1}{4}.\left(1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\right)\)

\(=\frac{1}{4}.\left(2-\frac{1}{n}\right)\)

\(=\frac{1}{2}-\frac{1}{4n}< 1\)

Vậy A < 1

26 tháng 9 2019

\(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{\left(2n\right)^2}.\)

\(A=\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+...+\frac{1}{4n^2}.\)

\(A=\frac{1}{4}\left(1+\frac{1}{4}+\frac{1}{9}+...+\frac{1}{n^2}\right)\)

\(A=\frac{1}{4}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)\)

So sánh \(\frac{1}{2^2}< \frac{1}{1\cdot2};\frac{1}{3^2}< \frac{1}{2\cdot3};....\)

\(\Rightarrow A< \frac{1}{4}\left(1+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{n\left(n-1\right)}\right)\)

\(\Rightarrow A< \frac{1}{4}\left(1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{n-1}+\frac{1}{n-1}-\frac{1}{n}\right)\)

\(\Rightarrow A< \frac{1}{4}\left(1+1-\frac{1}{n}\right)\)

\(\Rightarrow A< \frac{1}{4}\left(2-\frac{1}{n}\right)\)

\(\Rightarrow A< \frac{1}{2}-\frac{1}{4n}\)

có \(\frac{1}{2}>\frac{1}{2}-\frac{1}{4n}\)

\(\Rightarrow A< \frac{1}{2}-\frac{1}{4n}< \frac{1}{2}\) mà \(\frac{1}{2}< 1\)

\(\Rightarrow A< 1\)

8 tháng 12 2015

\(A<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}=1-\frac{1}{n}<1\)