K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2021

\(a,\) Ta có AD là p/g \(\widehat{xAC}\Rightarrow\stackrel\frown{DA}=\stackrel\frown{DC}\Rightarrow\widehat{DOA}=\widehat{DOC}\)

\(\Rightarrow OD\) là p/g \(\widehat{AOC}\)

Mà \(\Delta OAC\) cân tại \(O\left(OA=OC=R\right)\) nên OD cũng là đường cao

\(\Rightarrow OD\perp AC\)

\(b,\) Đề thiếu điểm E

18 tháng 9 2021

Cho (O,R) đường kính AB và tiếp tuyến Ax,AC là dây cung. Tia phân giác góc xAC cắt (O) tại D. Chứng minh rằng:
a)OD vuông góc với AC
b) E là giao điểm của AD và BC. Chứng minh ∆ABE cân tại B
c)BD cắt AC và Ax lần lượt tại K và F. Chứng minh rằng AEFK là hình thoi
d) Nếu góc xAC =60 độ. Tính diện tích AEFK theo R

a: Xét (O) có

CM là tiếp tuyến

CA là tiếp tuyến

Do đó: CM=CA

Xét (O) có 

DM là tiếp tuyến

DB là tiếp tuyến

Do đó: DM=DB

Ta có: CM+MD=CD

nên CA+DB=CD

19 tháng 11 2021

a: Xét (O) có

ΔABC nội tiếp

BC là đường kính

Do đó: ΔABC vuông tại A

1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn...
Đọc tiếp

1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC

2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn đường kính MB

3.cho nửa đường tròn tâm O đường kính AB, C thuộc nửa đường tròn.vẽ CH vuông góc với AB(H thuộc AB),M là trung điểm CH,BM cắt tiếp tuyến Ax của O tại P .chứng minh PC là tiếp tuyến của (O)

4.cho đường tròn O đường kính AB, M là một điểm trên OB.đường thẳng qua M vuông góc với AB tại M cắt O tại C và D. AC cắt BD tại P,AD cắt BC tại Q,AB cắt PQ tai I chứng minh IC,ID là tiếp tuyến của (O)

5.cho tam giác ABC nội tiếp đường tròn đường kính BC (AB<AC).T là một điểm thuộc OC.đường thẳng qua T vuông góc với BC cắt AC tại H và cắt tiếp tuyến tại A của O tại P.BH cắt (O) tại D. chứng minh PD là tiếp tuyến của O

6.cho tam giác ABC nội tiếp đường tròn O. phân giác góc BAC cắt BC tại D và cắt (O) tại M chứng minh BM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABD

0

a: Xét (O) có

OH là một phần đường kính

AB là dây

OH⊥AB tại H

Do đó: H là trung điểm của AB

Xét ΔMAB có

MH là đường trung tuyến

MH là đường cao

Do đó:ΔMAB cân tại M

Xét ΔOAM và ΔOBM có

OA=OB

AM=BM

OM chung

Do đó:ΔOAM=ΔOBM

Suy ra: \(\widehat{OAM}=\widehat{OBM}=90^0\)

=>ΔOMB vuông tại B

=>MB là tiếp tuyến

b: Xét (O) có

ΔABC nội tiếp

BC là đường kính

Do đó:ΔABC vuông tại A

a: Xét (O) có

CM là tiếp tuyến

CA là tiếp tuyến

Do đó: CM=CA và OC là tia phân giác của góc MOA(1)

Xét (O) có

DM là tiếp tuyến

DB là tiếp tuyến

Do đó: DM=DB và OD là tia phân giác của góc MOB(2)

Từ (1) và (2) suy ra \(\widehat{COD}=\dfrac{1}{2}\cdot180^0=90^0\)

Ta có: MC+MD=CD

nên CD=CA+DB

b: Xét ΔCOD vuông tại O có OM là đường cao

nên \(CM\cdot DM=OM^2=R^2\)

hay \(AC\cdot BD=R^2\)

a: góc AMB=góc ACB=90 độ

=>BM vuông góc DA và AC vuông góc DB

góc DMH+góc DCH=90+90=180 độ

=>DMHC nội tiếp

Xét ΔHMA vuông tại M và ΔHCB vuông tại C có

góc MHA=góc CHB

=>ΔHMA đồng dạng với ΔHCB

=>HM/HC=HA/HB

=>HM*HB=HA*HC

b: góc DBM=góc CBM=1/2*sđ cung CM

góc MBA=1/2*sđ cung MA

mà sđ cung CM=sđ cung MA

nên góc DBM=góc ABM

=>BM là phân giác của góc DBA

Xét ΔBDA có

BM vừa là đường cao, vừa là phân giác

=>ΔBDA cân tại B

d: Xét ΔMAK vuông tại M và ΔMDH vuông tại M có

MA=MD

góc MAK=góc MDH

=>ΔMAK=ΔMDH

=>MK=MH

Xét tứ giác AKDH có

M là trung điểm chung của AD và KH

AD vuông góc KH

=>AKDH là hình thoi