Tìm n để n/n+1 + 2/n+1 là số tự nhiên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với \(x=0\Rightarrow n^5+n^4+1=1\left(loai\right)\)
Với \(x=1\Rightarrow n^5+n^4+1=3\left(TM\right)\)
Với \(x\ge2\) ta có:
\(n^5+n^4+1\)
\(=n^5-n^2+n^4-n+n^2+n+1\)
\(=n^2\left(n^3-1\right)+n\left(n^3-1\right)+\left(n^2+n+1\right)\)
\(=n^2\left(n-1\right)\left(n^2+n+1\right)+n\left(n-1\right)\left(n^2+n+1\right)+\left(n^2+n+1\right)\)
\(=A\cdot\left(n^2+n+1\right)+B\left(n^2+n+1\right)+\left(n^2+n+1\right)\)
\(=\left(n^2+n+1\right)\left(A+B+1\right)\) là hợp số với mọi \(n\ge2\)
Vậy \(n=1\)
Với \(n=0\Rightarrow A=n^8+n+1=1\left(KTM\right)\) vì 1 không là SNT
Với \(n=1\Rightarrow A=n^8+n+1=3\left(TM\right)\) vì 3 là SNT
Với \(n\ge2\) ta có:
\(A=n^8+n+1\)
\(=\left(n^8-n^2\right)+n^2+n+1\)
\(=n^2\left(n^6-1\right)+\left(n^2+n+1\right)\)
\(=n^2\left[\left(n^3\right)^2-1^2\right]+\left(n^2+n+1\right)\)
\(=n^2\left(n^3-1\right)\left(n^3+1\right)+\left(n^2+n+1\right)\)
\(=X\cdot\left(n^3-1\right)+\left(n^2+n+1\right)\)
\(=X\left(n-1\right)\left(n^2+n+1\right)+\left(n^2+n+1\right)\)
\(=X'\left(x^2+n+1\right)+\left(n^2+n+1\right)\)
\(=\left(n^2+n+1\right)\left(X'+1\right)\) là hợp số với \(n\ge2\)
Vậy \(n=1\)
ta có : \(\frac{n+1}{n-1}=\frac{n-1+2}{n-1}\) \(=\frac{2}{n-1}\)
để \(\frac{n+1}{n-1}\) là số tự nhiên thì \(\frac{2}{n-1}\) phải là số tự nhiên
hay 2 chia hết cho n - 1
\(\Rightarrow n-1\inƯ\left(2\right)\)
mà Ư(2) = { - 2; -1; 1; 2}
\(\Rightarrow n-1\in\left\{-2;-1;1;2\right\}\)
\(\Rightarrow n\in\left\{-1;0;2;3\right\}\)
vì n là số tự nhiên
\(\Rightarrow n\in\left\{0;2;3\right\}\)
vậy .......
ủng hộ mk nha
Bài 5.5:
\(\left(2x-3\right)\left(x+1\right)+\left(4x^3-6x^2-6x\right):\left(-2x\right)=18\)
\(\Leftrightarrow\left(2x^2+2x-3x-3\right)+2x\cdot\left(2x^2-3x-3\right):\left(-2x\right)=18\)
\(\Leftrightarrow2x^2-x-3-2x^2+3x+3=18\)
\(\Leftrightarrow2x=18\)
\(\Leftrightarrow x=\dfrac{18}{2}\)
\(\Leftrightarrow x=9\)
\(\frac{n+1}{n-1}=\frac{\left(n-1\right)+2}{n-1}=\frac{n-1}{n-1}+\frac{2}{n-1}=1+\frac{2}{n-1}\)
Để \(1+\frac{2}{n-1}\) là số tự nhiên <=> \(\frac{2}{n-1}\) là số tự nhiên
=> n - 1 \(\in\) Ư(2) = { - 2; - 1; 1; 2 }
Ta có : n - 1 = - 2 => n = - 1 (loại)
n - 1 = - 1 => n = 0 (tm)
n - 1 = 1 => n = 2 (tm)
n - 1 = 2 => n = 3 (tm)
Vậy n = { 0; 2; 3 }
a) \(\left(n+1\right)^2+\left(n+2\right)^2+\left(n+3\right)^2=\left(n+10\right)^2\)
\(\Leftrightarrow n^2+2n+1+n^2+4n+4+n^2+6n+9=n^2+20n+100\)
\(\Leftrightarrow2n^2-8n-86=0\)
\(\Leftrightarrow n^2-4n=43\)
Ta có: \(n^2-4n=n^2-n-3n=n\left(n-1\right)-3n\)
\(n\left(n-1\right)\)là tích hai số tự nhiên liên tiếp nên khi chia cho \(3\)dư \(0\)hoặc \(2\).
Suy ra \(n^2-4n\)chia cho \(3\)dư \(0\)hoặc \(2\).
Mà \(43\)chia cho \(3\)dư \(1\)
do đó phương trình đã cho không có nghiệm tự nhiên.
b) Ta có: \(n^2+h^2+b^2+k^2+n+h+b+k=\left(n^2+n\right)+\left(h^2+h\right)+\left(b^2+b\right)+\left(k^2+k\right)\)
\(=n\left(n+1\right)+h\left(h+1\right)+b\left(b+1\right)+k\left(k+1\right)\)chia hết cho \(2\).
mà \(n+h+b+k\)chia hết cho \(6\)nên chia hết cho \(2\)
suy ra \(n^2+h^2+b^2+k^2\)chia hết cho \(2\)suy ra không phải là số nguyên tố
(do \(n^2+h^2+b^2+k^2>2\)).
Có : \(\frac{n}{n+1}+\frac{2}{n+1}=\frac{n+2}{n+1}=\frac{n+1+1}{n+1}=1+\frac{1}{n+1}\)
Vậy để \(\frac{n}{n+1}+\frac{2}{n+1}\)là số tự nhiên \(\Rightarrow\) \(\frac{1}{n+1}\)là số nguyên
\(\Rightarrow\)n+1=1\(\Rightarrow\)n=0\(\inℕ\)