K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2022

-Ta có: \(n^4+n^2+1=\left(n^4+n^3+n^2\right)+\left(-n^3-n^2-n\right)+\left(n^2+n+1\right)=n^2\left(n^2+n+1\right)-n\left(n^2+n+1\right)+\left(n^2+n+1\right)=\left(n^2+n+1\right)\left(n^2-n+1\right)\)

\(\Rightarrow\dfrac{n^2+n+1}{n^4+n^2+1}=\dfrac{n^2+n+1}{\left(n^2+n+1\right)\left(n^2-n+1\right)}=\dfrac{1}{n^2-n+1}\).

-Vậy \(\dfrac{n^2+n+1}{n^4+n^2+1}\left(n\in Nsao\right)\) không là phân số tối giản. 

2) Theo đề, ta có: \(\dfrac{23+n}{40+n}=\dfrac{3}{4}\)

\(\Leftrightarrow4\left(n+23\right)=3\left(n+40\right)\)

\(\Leftrightarrow4n+92-3n-120=0\)

\(\Leftrightarrow n=28\)

Vậy: n=28

22 tháng 3 2021

gọi UCLN của (30n+1,15n+2) là d                     30n+1 chia hết cho d

suy ra:30n+1 chia hết cho d                                     15n+2 chia hết cho d

suy ra:30n+4 chia hết cho d                    (30n+4)-(30n+1) chia hết cho d 

3 chia hết cho d                             vì 30n+1,15n+2 ko chia hết cho d

nên ucln =1                                     vậy ps 30n+1/15n+2 là ps tối giản

8 tháng 11 2015

Gọi \(d=ƯCLN\left(2n+1;2n^2-1\right);n\in N\)

Ta có:

\(2n+1\)chia hết cho \(d\Rightarrow n\left(2n+1\right)\) chia hết cho  \(d\)

và \(2n^2-1\) chia hết cho  \(d\)

nên \(\left(n\left(2n+1\right)-2n^2+1\right)\)chia hết cho  \(d\)

\(\Leftrightarrow n+1\)chia hết cho \(d\)

\(\Leftrightarrow2n+2\) chia hết cho \(d\)


\(\Leftrightarrow2n+2-\left(2n+1\right)\)chia hết cho \(d\)


\(\Leftrightarrow1\)chia hết cho \(d\Rightarrow d=1\)

Vậy, phân số \(B=\frac{2n+1}{2n^2-1}\) tối giản với  \(n\in N\)

 

 

4 tháng 3 2022

Trả lời;

undefined

4 tháng 3 2022

mình cho 3 tick

 

8 tháng 1 2022

Giả sử ( 3n - 2 : 4n - 3 ) = d do n ∈ N*       ⇒  d ∈ N

Suy ra: 3n - 2 ⋮ d và 4n - 3 ⋮ d

3n - 2 ⋮ d  ⇒ 12n - 8 ⋮ d

Mặt khác:  4n - 3 ⋮ d ⇒ 12n - 9 ⋮ d     ⇒ ( 12n - 8 ) - 1 ⋮ d    

⇒  1 ⋮ d hay suy ra d = 1

Vậy các phân số \(\dfrac{3n-1}{4n-3}\) với n ∈ N* là phân số tối giản

Gọi a=UCLN(3n-2;4n-3)

\(\Leftrightarrow\left\{{}\begin{matrix}12n-8⋮a\\12n-9⋮a\end{matrix}\right.\Leftrightarrow1⋮a\Leftrightarrow a=1\)

Do đó: Phân số 3n-2/4n-3 là phân số tối giản

19 tháng 3 2023

1Đặt UCLN(\(2n^2\) + n + 1;n) = d

=> \(2n^2\) + n + 1 ⋮ d ; n ⋮ d

=> (2n + 1) n ⋮ d

<=>\(2n^2\)  + n ⋮ d

<=>(2n+ n + 1) - (2n2 + n) ⋮ d

<=> 1⋮d

=> d ϵƯ(1)=1

=>UCLN(\(2n^2\) + n + 1;n) =1

=>dpcm

 

19 tháng 3 2023

hum biết nhe

khó qué

tui mới L4 

HIHI

 

6 tháng 8 2015

Không khó lắm nhưng dài => Không làm nữa

15 tháng 4 2023

a) Gọi d là ƯCLN(n + 1; n + 2)

\(\Rightarrow n+1⋮d\)

\(n+2⋮d\)

\(\Rightarrow\left[\left(n+2\right)-\left(n+1\right)\right]⋮d\)

\(\Rightarrow\left(n+2-n-1\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

Vậy \(\dfrac{n+1}{n+2}\) là phân số tối giản

b) Gọi d là ƯCLN(n + 1; 3n + 4)

\(\Rightarrow n+1⋮d\) và \(3n+4⋮d\)

Do \(n+1⋮d\Rightarrow3n+3⋮d\)

\(\Rightarrow\left[\left(3n+4\right)-\left(3n+3\right)\right]⋮d\)

\(\Rightarrow\left(3n+4-3n-3\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

Vậy \(\dfrac{n+1}{3n+4}\) là phân số tối giản

c) Gọi d là ƯCLN(3n + 2; 5n + 3)

\(\Rightarrow3n+2⋮d\) và \(5n+3⋮d\)

Do \(3n+2⋮d\)

\(\Rightarrow5\left(3n+2\right)⋮d\)

\(\Rightarrow15n+10⋮d\)   (1)

Do \(5n+3⋮d\)

\(\Rightarrow3\left(5n+3\right)⋮d\)

\(\Rightarrow15n+9⋮d\)   (2)

Từ (1) và (2) \(\Rightarrow\left[\left(15n+10\right)-\left(15n+9\right)\right]⋮d\)

\(\Rightarrow\left(15n+10-15n-9\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

Vậy \(\dfrac{3n+2}{5n+3}\) là phân số tối giản

d) Gọi d là ƯCLN(12n + 1; 30n + 2)

\(\Rightarrow12n+1⋮d\) và \(30n+2⋮d\)

Do \(12n+1⋮d\)

\(\Rightarrow5\left(12n+1\right)⋮d\)

\(\Rightarrow60n+5⋮d\)   (3)

Do \(30n+2⋮d\)

\(\Rightarrow2\left(30n+2\right)⋮d\)

\(\Rightarrow60n+4⋮2\)   (4)

Từ (3 và (4) \(\Rightarrow\left[\left(60n+5\right)-\left(60n+4\right)\right]⋮d\)

\(\Rightarrow\left(60n+5-60n-4\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

Vậy \(\dfrac{12n+1}{30n+2}\) là phân số tối giản

 

a: Gọi d=ƯCLN(n+1;n+2)

=>n+2-n-1 chia hết cho d

=>1 chia hết cho d

=>d=1

=>PSTG

b: Gọi d=ƯCLN(3n+4;n+1)

=>3n+4-3n-3 chia hết cho d

=>1 chia hết cho d

=>d=1

=>PSTG

c: Gọi d=ƯCLN(3n+2;5n+3)

=>15n+10-15n-9 chia hết cho d

=>1 chia hết cho d

=>d=1

=>PSTG

d: Gọi d=ƯCLN(12n+1;30n+2)

=>60n+5-60n-4 chia hết cho d

=>1 chia hết cho d

=>d=1

=>PSTG