K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2016

a)\(B=7+7^2+...+7^{99}\)

\(7B=7^2+7^3+...+7^{100}\)

\(7B-B=\left(7^2+7^3+...+7^{100}\right)-\left(7+7^2+...+7^{99}\right)\)

\(7B=\frac{7^{100}-7}{6}\)

29 tháng 4 2016

nhóc quậy phá sai

25 tháng 5 2017

A=(7+73)+(75+77)+....+(71997+71999)

A=7.(1+72)+75.(1+72)+....+71997.(1+72)

A=7.50+75.50+79.50+.....+71997.50

=>A chia hết cho 5 (1)

A=(7+73+75+....+71999)=7.(70+72+74+....+71998)

=>A chia hết cho 7 (2)

Mà ƯCLN(5;7)=1=>A chia hết cho 35

22 tháng 11 2017

Ban kia lam dung roi

25 tháng 8 2019

tí 

mk 

lm 

cho

25 tháng 8 2019

đủ tí chưa bạn :Đ????

10 tháng 11 2023

\(A=7+7^2+7^3+7^4+7^5+7^6+7^7+7^8\)

\(A=\left(7+7^3\right)+\left(7^2+7^4\right)+\left(7^5+7^7\right)+\left(7^6+7^8\right)\)

\(A=7\cdot\left(7+7^2\right)+7^2\cdot\left(1+7^2\right)+7^5\cdot\left(1+7^2\right)+7^6\cdot\left(1+7^2\right)\)

\(A=7\cdot50+7^2\cdot50+7^5\cdot50+7^6\cdot50\)

\(A=50\cdot\left(7+7^2+7^5+7^6\right)\)

\(A=5\cdot10\cdot\left(7+7^2+7^5+7^6\right)\)

Ta có: 5 ⋮ 5

⇒ \(A=5\cdot10\cdot\left(7+7^2+7^5+7^6\right)\) ⋮ 5 (đpcm) 

10 tháng 11 2023

A = 7 + 72 + 73 + 74 + 75 + 76 + 77 + 78

A =  (7 + 73) + (72+ 74) + (75 + 77) + (76 + 78)

A = 7.(1 + 72)  + 72.(1 + 72) + 75.(1 + 72) + 76.(1 + 72)

A = 7.( 1 + 49) + 72.( 1 + 49) + 75.(1 + 49) + 76. (1 + 49)

A = 7.50 + 72.50 + 75.50 + 76.50

A = 50.(7 + 72 + 75 + 76)

Vì 50 ⋮ 5 nên A = 50.(7 + 72 + 76) ⋮ 5 đpcm

18 tháng 12 2015

a)8^7 - 2^18 = 8.(2^18) - 2^18 = 7 . 2^18 = 14 . 2 ^17 

Vì 14 luôn chia hết cho chính nó suy ra 14 . 2 ^17 cũng chia hết cho 14. 

Vậy biểu thức ban đầu luôn chia hết cho 14

b)79^2+79.11=79(79+11)=79.90=79.30.3 chia hết cho 30

c)số chia hết cho 6 là số chia hết cho 2 và 3 
mà (n + 1) chia hết cho 2 và 3 với mọi số nguyên n 
(n + 2) chia hết cho 2 và 3 với mọi số nguyên n 
=>n³ + 3n² + 2n luôn chia hết cho 6 với mọi số nguyên n

Tick nha

 

11 tháng 9 2023

1,

Ta có:
\(\dfrac{73}{75}=1-\dfrac{2}{75}\)


\(\dfrac{77}{79}=1-\dfrac{2}{79}\)
So sánh phân số \(\dfrac{2}{75}\) và \(\dfrac{2}{79}\)
Vì \(75< 79\) nên \(\dfrac{1}{75}>\dfrac{1}{79}\)
Vậy \(1-\dfrac{2}{75}< 1-\dfrac{2}{79}\)
Hay \(\dfrac{73}{75}< \dfrac{77}{79}\)

2,

Vì \(\dfrac{53}{100}>\dfrac{47}{100}>\dfrac{47}{106}\) nên \(\dfrac{53}{100}>\dfrac{47}{106}\)

3,

Ta có:
\(\dfrac{81}{79}=1+\dfrac{2}{79}\)


\(\dfrac{65}{63}=1+\dfrac{2}{63}\)
So sánh phân số \(\dfrac{2}{79}\) và \(\dfrac{2}{63}\)
Vì \(79>63\) nên \(\dfrac{81}{79}< \dfrac{65}{63}\)
Hay \(\Rightarrow1+\dfrac{2}{79}< 1+\dfrac{2}{63}\)
Vậy \(\dfrac{81}{79}< \dfrac{65}{63}\)

4,

\(\dfrac{48}{47}>1>\dfrac{84}{85}\)

Vậy \(\dfrac{48}{47}>\dfrac{84}{85}\)

11 tháng 9 2023

giúp mình với ạ

cảm ơn ạ

25 tháng 8 2019

cần gấp

25 tháng 8 2019

Bài làm

a)Ta có:

Cứ cộng mỗi chữ số hàng đơn vị của mỗi số hạng trong biểu thức trong ngoặc 1 thì ta được:

1 chữ số tận cùng là 5. 

Mà biểu thức trong ngoặc 2 cũng vậy. Nên, ta có: 5-5=0

Vậy chữ số hàng đơn vị của hiệu a là 0.

12 tháng 12 2021

Bài 1:

\(a,A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\\ A=\left(1+2\right)\left(2+2^3+...+2^{2009}\right)=3\left(2+...+2^{2009}\right)⋮3\\ A=\left(2+2^2+2^3\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\\ A=\left(1+2+2^2\right)\left(2+...+2^{2008}\right)=7\left(2+...+2^{2008}\right)⋮7\)

\(b,\left(\text{sửa lại đề}\right)B=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\\ B=\left(1+3\right)\left(3+3^3+...+3^{2009}\right)=4\left(3+3^3+...+3^{2009}\right)⋮4\\ B=\left(3+3^2+3^3\right)+...+\left(3^{2008}+3^{2009}+3^{2010}\right)\\ B=\left(1+3+3^2\right)\left(3+...+3^{2008}\right)=13\left(3+...+3^{2008}\right)⋮13\)

12 tháng 12 2021

Bài 2:

\(a,\Rightarrow2A=2+2^2+...+2^{2012}\\ \Rightarrow2A-A=2+2^2+...+2^{2012}-1-2-2^2-...-2^{2011}\\ \Rightarrow A=2^{2012}-1>2^{2011}-1=B\\ b,A=\left(2020-1\right)\left(2020+1\right)=2020^2-2020+2020-1=2020^2-1< B\)

ta có: \(\frac{73}{75}>\frac{73}{79}>\frac{77}{79}\Rightarrow\frac{73}{75}>\frac{77}{79}\)

ta có: \(\frac{53}{100}< \frac{47}{100}\)

ta có: \(\frac{48}{47}>1;\frac{84}{85}< 1\Rightarrow\frac{48}{47}>\frac{84}{85}\)