lập phương trình đường tròn có tâm thuộc đường thẳng x=3 , tiếp xúc với Oy và qua A (5,4)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Do tâm (C) thuộc \(\Delta\) nên có dạng: \(I\left(-2a-3;a\right)\)
\(d\left(I;d\right)=R\Leftrightarrow\dfrac{\left|-2a-3-a+1\right|}{\sqrt{1^2+\left(-1\right)^2}}=\sqrt{2}\)
\(\Leftrightarrow\left|3a+2\right|=2\Rightarrow\left[{}\begin{matrix}a=0\\a=-\dfrac{4}{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}I\left(-3;0\right)\\I\left(-\dfrac{1}{3};-\dfrac{4}{3}\right)\end{matrix}\right.\)
Có 2 đường tròn thỏa mãn: \(\left[{}\begin{matrix}\left(x+3\right)^2+y^2=2\\\left(x+\dfrac{1}{3}\right)^2+\left(y+\dfrac{4}{3}\right)^2=2\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1.
Gọi \(I\left(x;y\right)\) là tâm đường tròn \(\Rightarrow\overrightarrow{AI}=\left(x-1;y-3\right)\)
Do đường tròn tiếp xúc với \(d_1;d_2\) nên:
\(d\left(I;d_1\right)=d\left(I;d_2\right)\Rightarrow\dfrac{\left|5x+y-3\right|}{\sqrt{26}}=\dfrac{\left|2x-7y+1\right|}{\sqrt{53}}\)
Chà, đề đúng ko em nhỉ, thế này thì vẫn làm được nhưng rõ ràng nhìn 2 cái mẫu kia thì số liệu sẽ xấu 1 cách vô lý.
2.
Phương trình đường thẳng kia là gì nhỉ? \(2x+y=0\) à?
![](https://rs.olm.vn/images/avt/0.png?1311)
a) (C) có tâm I và đi qua M nên bán kính R = IM
Ta có:
Vậy đường tròn (C) : (x + 2)2 + (y – 3)2 = 52.
b) (C) tiếp xúc với (Δ) : x – 2y + 7 = 0
⇒ d(I; Δ) = R
Mà
Vậy đường tròn (C) :
c) (C) có đường kính AB nên (C) có :
+ tâm I là trung điểm của AB
Vậy đường tròn (C) : (x – 4)2 + (y – 3)2 = 13.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Phương trình đường tròn tâm A bán kính AB là \({\left( {x + 1} \right)^2} + {y^2} = 17\)
b) Ta có \(\overrightarrow {{u_{AB}}} = \overrightarrow {AB} = \left( {4;1} \right) \Rightarrow \overrightarrow {{n_{AB}}} = \left( {1; - 4} \right)\).
Phương trình AB là \(1\left( {x + 1} \right) - 4y = 0 \Leftrightarrow x - 4y + 1 = 0\).
c) Bán kính của đường tròn tâm O, tiếp xúc với đường thẳng AB là
\(R = d\left( {O,AB} \right) = \frac{{\left| {0 - 4.0 + 1} \right|}}{{\sqrt {{1^2} + {{\left( { - 4} \right)}^2}} }} = \frac{1}{{\sqrt {17} }}\)
Phương trình đường tròn tâm O tiếp xúc AB là \({x^2} + {y^2} = \frac{1}{{17}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đường thẳng Δ song song với d ⇒ Δ: x + y + c = 0, (c ≠ 0)
Vì Δ đi qua A ⇒ 3 + 0 + c = 0 ⇒ c = -3(tm)
Vậy đường thẳng Δ có dạng: x+y-3=0
Vì đường tròn có tâm I thuộc d nên I(a;-a)
Vì đường tròn đi qua A, B nên I A 2 = I B 2 ⇒ (3 - a ) 2 + a 2 = a 2 + (2 + a ) 2 ⇔ (3 - a ) 2 = (2 + a ) 2
Vậy phương trình đường tròn có dạng:
Ta có:
Giả sử elip (E) có dạng:
Vì (E) đi qua B nên:
Mà
Vậy phương trình chính tắc của elip (E) là:
![](https://rs.olm.vn/images/avt/0.png?1311)
Tâm I thuộc đường thẳng x+y-3=0 nên I(a;3-a).
Đường tròn có tâm I bán kính R=1 tiếp xúc với trục hoành nên
d(I,Ox)=|3-a|=1, suy ra 3-a=1 hoặc 3-a=-1
- Nếu 3-a=1 thì a=2, I(2;1), \((C):(x-2)^2+(y-1)^2=1\).
- Nếu 3-a=-1 thì a=4, I(4;-1), \((C):(x-4)^2+(y+1)^2=1\)