Cho tam giác ABC vuông tại B phân giác AD và CK (D thuộc BC , K thuộc AB) kẻ DM vuông góc với AC ( M thuộc AC )phân giác AC lấy điểm N sao cho CN bằng CB: a) chứng minh tam giác ABD bằng tam giác AMD b) chứng minh KN song song với DM: c) gọi giao điểm của AD và BN là I tính góc BM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C1 :
Hình : tự vẽ
a )Vì CA=CB ( đề bài cho ) => tam giác ABC cân tại C
mà CI vuông góc vs AB => CI là đường cao của tam giác ABC
=> CI cũng là đường trung tuyến của tam giác ABC ( t/c tam giác cân )
=> IA=IB (đpcm)
C1 :
b) Có IA=IB ( cm phần a )
mà IA+IB = AB
IA + IA = 12 (cm)
=> IA = \(\frac{12}{2}=6\left(cm\right)\)
Xét tam giác vuông CIA có : CI2 + IA2 = CA2 ( Đ/l Py-ta -go )
CI2 + 62 = 102
CI2 = 102 - 62 = 64
=> CI = \(\sqrt{64}=8\left(cm\right)\)
Vậy CI ( hay IC ) = 8cm
a. Vì AD là tia phân giác góc A
=> BAD = BAC
Xét tam giác BAD và tam giác BAC:
AB chung
BAD = CAD (cmt)
AB = AC( tam giác ABC cân tại A)
=> tam giác BAD = tam giác CAD (cgc)
b. Vì tam giác BAD = tam giác CAD (cmt)
=> BD = CD(hai góc tương ứng) (đpcm)
c. Vì DM ⊥ AB (M ∈ AB)
=> M = 90o
Vì DN ⊥ AC (N ∈ AC)
=> N = 90o
Xét tam giác BDM và tam giác CDN :
M = N (=90o)
BD = CD (cmb)
B = C(tam giác ABC cân tại A)
=>tam giác BDM = tam giác CDN(ch-gn)(đpcm)
=> DM = DN (2 cạnh tương ứng)
d. Xét tam giác AMD và tam giác AND:
DM = DN(cmc)
M = N(=90o)\
AD chung
=> tam giác AMD = tam giác AND (ch-cgv) (đpcm)
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
góc ABD=góc HBD
=>ΔBAD=ΔBHD
b: ΔBAD=ΔBHD
=>DA=DH
mà DH<DC
nên DA<DC
c: Xét ΔDAK vuông tại A và ΔDHC vuông tại H có
DA=DH
AK=HC
=>ΔDAK=ΔDHC
=>góc ADK=góc HDC
=>góc HDC+góc KDC=180 độ
=>K,D,H thẳng hàng
A )Ta có tam giác ABC cân tại A
=> ˆABC=ˆACBABC^=ACB^
Và AB = AC
Xét hai tam giác vuông BCK và CBH ta có :
BC chung
ˆKBC=ˆBCHKBC^=BCH^
=>BCK = CBH (cạnh huyền - góc nhọn )
=>BH = CK (đpcm)
B) ta có BCK = CBH
=> ˆHBC=ˆKCBHBC^=KCB^
=> ˆABH=ˆACKABH^=ACK^
=> tam giác OBC cân tại O
=> BO = CO
Xét tam giác ABO và tam giác ACO
AB = AC
BO = CO (cmt)
ˆABH=ˆACKABH^=ACK^
=> ABO=ACO (c-g-c)
=> ˆBAO=ˆCAOBAO^=CAO^
=> AO là phân giác góc ABC (đpcm)
C) ta có
AI là phân giác góc ABC
Mà tam giác ABC cân tại A
=> AI vuông góc với cạnh BC (đpcm)
Câu a (1,0đ) Chứng minh :ABD = ACE
Xét ABD và ACE :có AB=AC (cạnh bên cân); =(góc đáycân);BD=CE (gt) (0,25đ) x3=(0,75đ)
Vậy ABD = ACE(cgc) (0,25đ)
Câu b (0,75đ) Chứng minh đúng vuông AMD = vuông ANE vì có AD = AE;
(do ABD =ACE) (0,5đ)
Kết luận AMD = ANE và suy ra AM =AN) (0,25đ)
Câu c (0,75đ): Chứng minh đúng vuông BMD = vuông CNE (cạnh huyền - góc nhọn )(0,25đ)
Lập luận chứng minh được rồi suy ra KDE cân tại K (1)(0,25đ)
Từ lập luận để (2)
Kết hợp (1)và (2) KDE đều )(0,25đ)
a) Xét tam giác ABD và tam giác ACE có:
AB = AC (Vì tam giác ABC cân tại A)
\(\widehat{ABC}=\widehat{ACB}\)(vì tam giác ABC cân tại A)
BD = CE (gt)
Do đó tam giác ABD = tam giác ACE(cgc)
b) Ta có: tam giác ABD = tam giác ACE (cmt)
\(\Rightarrow\)AD = AE (hai cạnh tương ứng) (1)
\(\Rightarrow\widehat{BAD}=\widehat{CAE}\)(hai góc tương ứng) (2)
Từ (1) và (2) \(\Rightarrow\) tam giác vuông AMD = tam giác vuông ANE (ch-gn)
\(\Rightarrow\)AM = AN (hai cạnh tương ứng)
c) Trong tam giác ABC có góc BAC=120 độ
\(\Rightarrow\)Góc ABC = góc ACB = \(\frac{180-120}{2}\)= 30 độ
Trong tam giác vuông BMD có góc MBD = 30 độ \(\Rightarrow\widehat{MDB}=60\)độ
Tương tự: Ta được, trong tam giác vuông NCE có góc NEC =60 độ
\(\Rightarrow\)\(\widehat{MDB}=\widehat{NEC}\)(=60 độ)
Mặt khác: \(\widehat{MDB}=\widehat{EDK}\left(đđ\right)\)
\(\widehat{NEC}=\widehat{DEK}\left(đđ\right)\)
\(\Rightarrow\widehat{EDK}=\widehat{DEK}\)(=60 độ)
\(\Rightarrow\widehat{DKE}=180-\left(60\times2\right)=60\)độ
\(\Rightarrow\)Trong tam giác DKE có 3 góc EDK;DEK;DKE cùng bằng 60
Hay tam giác DKE đều.
a) Xét hai tam giác ABD và ACE ta có
AB = AC (gt)
\(\widehat{ABD}=\widehat{ACE}\left(gt\right)\)
BD = CE (gt)
Do đó: \(\Delta ABD=\Delta ACE\left(c-g-c\right)\)
b) Ta có: \(\Delta ABD=\Delta ACE\)(câu a)
\(=>\hept{\begin{cases}\widehat{BAD}=\widehat{EAC}\\AD=AE\end{cases}}\)(cặp góc và cặp cạnh tương ứng)
Xét hai tam giác vuông AMD và ANE ta có
AD = AE (cmt)
\(\widehat{MAD}=\widehat{EAN}\left(cmt\right)\)
Do đó: \(\Delta AMD=\Delta ANE\left(c.h-g.n\right)\)
=> AM =AN (cặp cạnh tương ứng)
c) Trong \(\Delta ABC\)cân tại A ta có: \(\widehat{ABC}=\widehat{ACB}=\frac{180^o-\widehat{BAC}}{2}=\frac{180^o-120^0}{2}=30^o\)
Trong \(\Delta MDB\)vuông tại M ta có: \(\widehat{BDM}=90^o-\widehat{DBM}=90^o-30^o=60^o\)
Ta lại có: \(\widehat{ABC}=\widehat{ACB}\left(gt\right)\)
=> \(\widehat{MDB}=\widehat{NEC}\)(vì cùng bù với \(\widehat{ABC}\))
mà \(\hept{\begin{cases}\widehat{BDM}=\widehat{KDE}\left(đđ\right)\\\widehat{NEC}=\widehat{DEK}\left(đđ\right)\end{cases}}\)
=> \(\widehat{KDE}=\widehat{KED}=60^o\)(1)
Trong \(\Delta DKE\)có: \(\widehat{KDE}+\widehat{KED}+\widehat{DKE}=180^o\)
hay \(60^o+60^o+\widehat{DKE}=180^o\)
\(120^o+\widehat{DKE}=180^o\)
\(\widehat{DKE}=180^o-120^o\)
\(\widehat{DKE}=60^o\)(2)
Từ (1) và (2) => \(\Delta DKE\)là tam giác đều
P/s: k hộ thần :3
a: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó: ΔABD=ΔACE
Suy ra: AD=AE
Xét ΔACD và ΔABE có
AC=AB
CD=BE
AD=AE
Do đó: ΔACD=ΔABE
b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
\(\widehat{HAB}=\widehat{KAC}\)
Do đó: ΔAHB=ΔAKC
Suy ra: BH=CK
Cho mình xin hình vẽ với câu c nữa. Mình cảm ơn nhiều lắm huhuhhhu
Phân giác AC là gì bạn nhỉ?