Bài 1: Cho ABC cân tại A, trên cạnh AB và AC lần lượt lấy hai điểm E và D sao cho BD cắt CE tại G. Chứng minh rằng:
a) BD = CE.
b) GED cân.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBEC và ΔCDB có
BE=CD
\(\widehat{EBC}=\widehat{DCB}\)
BC chung
Do đó: ΔBEC=ΔCDB
Suy ra: CE=DB
b: Xét ΔGBC có \(\widehat{GCB}=\widehat{GBC}\)
nên ΔGBC cân tại G
=>GB=GC
Ta có: GB+GD=BD
GE+GC=CE
mà BD=CE
và GB=GC
nên GD=GE
hay ΔGDE cân tại G
c: Ta có: AB=AC
nên A nằm trên đường trung trực của BC(1)
Ta có: GB=GC
nên G nằm trên đường trung trực của BC(2)
Ta có: MB=MC
nên M nằm trên đường trung trực của BC(3)
Từ (1), (2) và (3) suy ra A,G,M thẳng hàng
1) TA CÓ : AB=AC ( \(\Delta ABC\)CÂN TẠI A)
AD = AE (GT)
=> AB- AE= AC- AD
=> BE = CD
XÉT \(\Delta BEC\)VÀ \(\Delta CDB\)
CÓ : BE = CD ( CMT)
\(\widehat{ABC}=\widehat{ACB}(\Delta ABC\)CÂN TẠI A)
BC LÀ CẠNH CHUNG
\(\Rightarrow\Delta BEC=\Delta CDB\left(C-G-C\right)\)
\(\Rightarrow CE=BD\)( 2 CẠNH TƯƠNG ỨNG)
2) TA CÓ: \(\Delta BEC=\Delta CDB\left(pa\right)\)
\(\Rightarrow\widehat{BEC}=\widehat{CDB}\)( 2 GÓC TƯƠNG ỨNG)
XÉT \(\Delta ACE\)VÀ \(\Delta ABD\)
CÓ: AC =AB ( \(\Delta ABC\)CÂN TẠI A)
AE = AD (GT)
CE = BD ( pa)
\(\Rightarrow\Delta ACE=\Delta ABD\left(C-C-C\right)\)
\(\Rightarrow\widehat{ACE}=\widehat{ABD}\)( 2 GÓC TƯƠNG ỨNG)
XÉT \(\Delta BEG\)VÀ \(\Delta CDG\)
CÓ: \(\widehat{BEC}=\widehat{CDB}\left(cmt\right)\)
BE = CD ( pa)
\(\widehat{ABD}=\widehat{ACE}\left(cmt\right)\)
\(\Rightarrow\Delta BEG=\Delta CDG\left(G-C-G\right)\)
\(\Rightarrow EG=DG\)( 2 CẠNH TƯƠNG ỨNG)
\(\Rightarrow\Delta GDE\)CÂN TẠI G ( ĐỊNH LÍ)
3) ( CẠNH BÊN 4,8 CM; CẠNH ĐÁY 10 CM)
CHU VI CỦA TAM GIÁC ABC LÀ:
4,8+ 4,8+ 10 = 19,6 (CM)
KL: CHU VI CỦA TAM GIÁC ABC LÀ 19,6 CM
CHÚC BN HỌC TỐT!!!!!
a: Xét ΔDBM vuông tại D và ΔECN vuông tại E có
BD=CE
\(\widehat{B}=\widehat{C}\)
Do đó: ΔDBM=ΔECN
b: Xét ΔDME vuông tại D và ΔEND vuông tại E có
MD=EN
ED chung
Do đó: ΔDME=ΔEND
c: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{B}=\widehat{C}\)
BD=CE
Do đó: ΔABD=ΔACE
Suy ra: AD=AE
hay ΔADE cân tại A
3b)
Ta có tg BNK vuông tại K ->BN>BK
Ta có IK=MN(tính chất đoạn chắn)
Ta có : BC+MN=BK+KC+MN=BK+BI+IK=2BK
Vì BK<BN->2BK<2BN->BN>BK/2->BN>BC+MN/2
a) Vì ΔABCΔ��� cân tại A(gt)�(��)
=> ˆABC=ˆACB���^=���^ (tính chất tam giác cân).
Mà ˆACB=ˆNCE���^=���^ (vì 2 góc đối đỉnh).
=> ˆABC=ˆNCE.���^=���^.
Hay ˆMBD=ˆNCE.���^=���^.
Xét 2 ΔΔ vuông BDM��� và CEN��� có:
ˆBDM=ˆCEN=900(gt)���^=���^=900(��)
BD=CE(gt)��=��(��)
ˆMBD=ˆNCE(cmt)���^=���^(���)
=> ΔBDM=ΔCENΔ���=Δ��� (cạnh góc vuông - góc nhọn kề).
=> DM=EN��=�� (2 cạnh tương ứng).
b) Xét 2 ΔΔ vuông DMI��� và ENI��� có:
ˆMDI=ˆNEI=900(gt)���^=���^=900(��)
DM=EN(cmt)��=��(���)
ˆDIM=ˆEIN���^=���^ (vì 2 góc đối đỉnh)
=> ΔDMI=ΔENIΔ���=Δ��� (cạnh góc vuông - góc nhọn kề).
=> MI=NI��=�� (2 cạnh tương ứng).
=> I là trung điểm của MN.��.
Mà I∈BC(gt)�∈��(��)
=> Đường thẳng BC�� cắt MN�� tại trung điểm I của MN(đpcm).��(đ���).
a: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{BAD}\) chung
AD=AE
Do đó: ΔABD=ΔACE
Suy ra: BD=CE
b: Xét ΔEDC và ΔDEB có
DE chung
\(\widehat{EDC}=\widehat{DEB}\)
DC=EB
Do đó: ΔEDC=ΔDEB
Suy ra: \(\widehat{GED}=\widehat{GDE}\)
hay ΔGED cân tại G