K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABD vuông tại A và ΔHBD vuông tại H có 

BD chung

\(\widehat{ABD}=\widehat{HBD}\)

Do đó: ΔABD=ΔHBD

b: Ta có: ΔABD=ΔHBD

nên DA=DH

mà DH<DC

nên DA<DC

c: Xét ΔDAK vuông tại A và ΔDHC vuông tại H có 

DA=DH

AK=HC

Do đó: ΔDAK=ΔDHC

Suy ra: DK=DC

hay ΔDKC cân tại D

d: Ta có: ΔDAK=ΔDHC

nên \(\widehat{ADK}=\widehat{HDC}\)

\(\Leftrightarrow\widehat{HDC}+\widehat{KDC}=180^0\)

hay H,D,K thẳng hàng

4 tháng 2 2022

Vẽ hình giúp em với ạ em cảm ơn !
 

Xét 2 tam giác vuông ABD và tam giác HBD có:

BD chung

\(\widehat{ABD=}\widehat{HBD}\)(BD p/g của B)

\(\Rightarrow\)Tam giác HBD=Tam giác ABD(cạnh huyền-góc nhọn)

b,Vì Tam giác HBD=Tam giác ABD(cạnh huyền-góc nhọn)

\(\Rightarrow AD=DH\)

mà DH<DC(vì trong tam giác vuông cạnh góc vuông luôn luôn bé hơn cạnh huyền)

\(\Rightarrow\)AD<DC

c, Ta có AD=DH(câu a) \(\Rightarrow AD^2=DH^2\)

AK=HC(gt) \(\Rightarrow\)\(AK^2=HC^2\)

\(\Rightarrow KD^2=DC^2\Rightarrow KD=DC\)

Vậy tam giác DKC là tam giác cân tại D

Hok tốt

Hình đấy nhá

Quên mất !

Hok tốt

a: Xet ΔABC vuông tại A và ΔHAC vuông tại H có

góc C chung

=>ΔABC đồng dạng với ΔHAC

b: ΔABC đồng dạng với ΔHAC

=>CA/CH=CB/CA

=>CA^2=CH*CB

 

23 tháng 11 2016

Ta có hình vẽ sau:

A H D B C 1 2 M N

a) \(\widehat{AHB}\) = \(\widehat{DHB}\) = \(\frac{180^o}{2}\) = 90o (2 góc kề bù)

Xét ΔABH và ΔDBH có:

BH là cạnh chung

\(\widehat{AHB}\) = \(\widehat{DHB}\) = 90o (cm trên)

AH = DH (gt)

=> ΔABH = ΔDBH (c.g.c) (đpcm)

b) Vì ΔABH = ΔDBH (ý a)

=> \(\widehat{B_1}\) = \(\widehat{B_2}\) ( 2 góc tương ứng)

= BC là tia phân giác của \(\widehat{ABD}\) (đpcm)

c) Vì ΔABH = ΔDBH => AB = DB (2 cạnh tương ứng)

Xét ΔABC và ΔDBC có:

BC là cạnh chung

\(\widehat{B_1}\) = \(\widehat{B_2}\) (ý b)

AB = DB (cm tên)

=> ΔABC = ΔDBC(c.g.c)

=> \(\widehat{BAC}\) = \(\widehat{BDC}\) (2 góc tương ứng) (đpcm)

d) Vì ΔABH = ΔDBH (ý a)

=> AB = DB => \(\frac{1}{2}\)AB = \(\frac{1}{2}\)DB

=> NB = ND = \(\frac{1}{2}\)DB

=> N là trung điểm của BD(đpcm)

23 tháng 11 2016

câu a) có nhầm ko z bn?

a: Xét ΔABH vuông tại H và ΔDBH vuông tại H có

HB chung

HA=HD

Do đó: ΔABH=ΔDBH

b: Ta có: ΔABH=ΔDBH

nên \(\widehat{ABH}=\widehat{DBH}\)

hay BC là tia phân giác của góc ABD

24 tháng 11 2016

Ta có hình vẽ:

A B C D H M N

a/ Xét tam giác ABH và tam giác DBH có:

BH: cạnh chung

\(\widehat{AHB}\)=\(\widehat{DHB}\)=900 (GT)

AH = HD (GT)

Vậy tam giác ABH = tam giác DBH (c.g.c)

b/ Ta có: tam giác ABH = tam giác DBH (câu a)

=> \(\widehat{ABH}\)=\(\widehat{DBH}\)( 2 góc tương ứng)

=> \(\widehat{ABC}\)=\(\widehat{DBC}\)

=> BC là phân giác của góc ABD (đpcm)

c/ Xét tam giác ABC và tam giác DBC có:

BC: cạnh chung

\(\widehat{ABC}\)=\(\widehat{DBC}\) (đã chứng minh)

AB = DB (vì tam giác ABH = tam giác DBH)

=> tam giác ABC = tam giác DBC (c.g.c)

=>\(\widehat{BAC}\)=\(\widehat{BDC}\)(2 góc tương ứng)

d/ Ta có: AB = DB (vì tam giác ABH = tam giác DBH)

Mà BM = AM

=> BN = DN

\(\Rightarrow\) Vậy N là trung điểm BD (đpcm)

a: Xét ΔABH vuông tại H và ΔDBH vuông tại H có

HB chung

HA=HD

Do đó: ΔABH=ΔDBH

b: Ta có: ΔABH=ΔDBH

nên \(\widehat{ABH}=\widehat{DBH}\)

hay BC là tia phân giác của góc ABD

c: Xét ΔACD có 

CH là đường cao

CH là đường trung tuyến

Do đó: ΔACD cân tại C

Xét ΔBAC và ΔBDC có

BA=BD

AC=DC

BC chung

DO đó: ΔBAC=ΔBDC

Suy ra: \(\widehat{BAC}=\widehat{BDC}\)

28 tháng 4 2019

Sai đề rùi
Góc ABE ko có cắt BD tại F đc nha!!!

28 tháng 4 2019

làm a b thui

a: Xét ΔABD vuông tại A và ΔHBD vuông tại H có

BD chung

\(\widehat{ABD}=\widehat{HBD}\)

Do đó:ΔABD=ΔHBD

b: Xét ΔADK vuông tại A và ΔHDC vuông tại H có

DA=DH

\(\widehat{ADK}=\widehat{HDC}\)

Do đó: ΔADK=ΔHDC

Suy ra: DK=DC

c: Ta có: BA+AK=BK

BH+HC=BC

mà BA=BH

và AK=HC

nên BK=BC

hay ΔBKC cân tại B