MN có thể giúp em câu 38 ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(M\in d\) nên M(1+2t; 1-t ; t)
MA+MB= \(\sqrt{4t^2+\left(t-1\right)^2+\left(t+1\right)^2}+\sqrt{\left(2t-1\right)^2+t^2+\left(t-1\right)^2}\)
\(=\sqrt{6t^2+2}+\sqrt{6t^2-6t+2}=\sqrt{6t^2+2+}\sqrt{6.\left(t-\dfrac{1}{2}\right)^2+\dfrac{1}{2}}\)
Chọn \(\overset{r}{u}=\left(\sqrt{6t};\sqrt{2}\right);\overset{r}{v}=\left(\sqrt{6}.\left(\dfrac{1}{2}-t\right);\dfrac{1}{\sqrt{2}}\right)\)
\(\Rightarrow\overset{r}{u}+\overset{r}{v}=\left(\dfrac{\sqrt{6}}{2};\dfrac{3}{\sqrt{2}}\right)\) , Ta có :
MA+MB=\(\left|\overset{r}{u}\right|+\left|\overset{r}{v}\right|\ge\left|\overset{r}{u}+\overset{r}{v}\right|=\sqrt{\dfrac{6}{4}+\dfrac{9}{2}}=\sqrt{6}\)
Dấu đẳng thức xảy ra <=> \(\overset{r}{u};\overset{r}{v}\) cùng hướng
\(\Leftrightarrow\dfrac{\sqrt{6t}}{\sqrt{6}\left(\dfrac{1}{2}-t\right)}=\dfrac{\sqrt{2}}{\dfrac{1}{\sqrt{2}}}\Leftrightarrow1=1-2t\)
\(\Leftrightarrow t=\dfrac{1}{3}\) . Vậy MA+MB nhỏ nhất
\(\Leftrightarrow M\left(\dfrac{5}{3},\dfrac{2}{3};\dfrac{1}{3}\right)\)
Vậy chọn D
(SAB) và (SCD) có AB // CD => giao tuyến của chúng là 1 đường thẳng song song với AB và CD
Mà SD vuông góc với CD; SA vuông góc với AB nên góc giữa 2 mp (SAB) và (SCD) là góc giữa SA và SD hay là góc ASD
tan \(\widehat{ASD}\) = \(\dfrac{AD}{SA}\) = \(\dfrac{1}{\sqrt{3}}\)
=> \(\widehat{ASD}=30^{^o}\)
+ số phần tử của không gian mẫu là: \(n\left(\pi\right)=C\overset{1}{6}.C\overset{1}{6}=36\)
+ gọi A bằng " Cả 2 lần xuất hiện mặt 6 chấm "
số phần tử của biến cố A là n(A) =1
Xác xuất biến cố A là P(A) = \(\dfrac{n\left(A\right)}{n\left(\pi\right)}=\dfrac{1}{36}\)
Vậy chọn A
\(g'\left(x\right)=3.f'\left(3x\right)+9=0\Rightarrow f'\left(3x\right)=-3\Rightarrow\left[{}\begin{matrix}3x=-1\\3x=0\\3x=1\\3x=2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=0\\x=\dfrac{1}{3}\\x=\dfrac{2}{3}\end{matrix}\right.\)
\(\Rightarrow\) Trên \(\left[-\dfrac{1}{3};\dfrac{1}{3}\right]\) hàm \(g\left(x\right)\) đạt cực đại tại \(x=0\) và cực tiểu tại \(x=-\dfrac{1}{3};\dfrac{1}{3}\)
\(\Rightarrow g\left(x\right)_{max}=g\left(0\right)=f\left(0\right)\)
41. Do \(\left(e;e^2\right)\in\left(2;+\infty\right)\) nên \(f\left(x\right)=3x^2+6x\)
\(I=\int\limits^{e^2}_e\dfrac{3\left(ln^2x\right)^2+6ln^2x}{x.lnx}dx=\int\limits^{e^2}_e\dfrac{3ln^3x+6lnx}{x}dx\)
Đặt \(lnx=t\Rightarrow\dfrac{dx}{x}=dt\) ; \(\left\{{}\begin{matrix}x=e\Rightarrow t=1\\x=e^2\Rightarrow t=2\end{matrix}\right.\)
\(I=\int\limits^2_1\left(3t^3+6t\right)dt=\int\limits^2_1\left(\dfrac{3}{4}t^4+3t^2\right)|^2_1=\dfrac{81}{4}\)
Cả 4 đáp án đều sai
42.
Đặt \(2021=a\) (ngắn cho dễ viết), \(z=x+yi\Rightarrow x^2+y^2=a^4\)
\(\left(x+\left(y+a\right)i\right)\left(x-\dfrac{1}{a}-yi\right)=x^2-\dfrac{x}{a}+y^2+ay+\left(ax-\dfrac{y}{a}-1\right)i\)
Số đã cho thuần ảo \(\Rightarrow\left\{{}\begin{matrix}x^2+y^2=a^4\\x^2+y^2-\dfrac{x}{a}+ay=0\end{matrix}\right.\) và \(ax-\dfrac{y}{a}-1\ne0\) (1)
\(\Rightarrow\left\{{}\begin{matrix}x^2+y^2=a^4\\a^4-\dfrac{x}{a}+ay=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x^2+y^2=a^4\\x=a^5+a^2y\end{matrix}\right.\)
\(\Rightarrow\left(a^5+a^2y\right)^2+y^2=a^4\)
\(\Rightarrow\left(a^4+1\right)y^2+2a^7y+a^{10}-a^4=0\)
\(\Delta'=a^{14}-\left(a^4+1\right)\left(a^{10}-a^4\right)=-a^4\left(a^6-a^4-1\right)< 0\)
\(\Rightarrow\) Pt vô nghiệm hay ko tồn tại số phức thỏa yêu cầu
II. Phần tự luận
Câu 1: Động năng của một vật phụu thuộc vào khối lượng và vận tốc
Ví dụ về vật vừa có động năng vừa có thế năng: một chiếc lá đang rơi từ trên cây xuống
Câu 2: Vì nếu cho đá vào trước thì đường và chanh sẽ chậm hòa tan vàotrong nước do nhiệt độ càn cao thì các hạt nguyên tử phân tử chuyển động càng nhanh nên cần hòa tan đường và chanh vào trước để được hòa tan vào trong nước hơn rồi mới nên cho đá vào
II. Phần tự luận:
Câu 3:
Công thực hiện được:
\(A=F.s=180.8=1440J\)
Công suất của người kéo:
\(\text{℘}=\dfrac{A}{t}=\dfrac{1440}{30}==48W\)
Câu 4:
Đổi: \(12km/h=43,2m/s\)
Công suất của ngựa:
\(\text{℘}=\dfrac{A}{t}=\dfrac{F.s}{t}=F.\dfrac{s}{t}=F.\upsilon=320.43,2=13824W\)
Em chắc chứ hay trả lời cho có, ăn số lượng?
dealine chứ j hỉu quá mà