K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2021

10. Câu này chứng minh BĐT BSC:

\(\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}\ge\sqrt{\left(ab+bc\right)^2}=b\left(a+c\right)\)

1 tháng 9 2021

11.

Ta có: \(\dfrac{1}{1+a}+\dfrac{1}{1+b}-\dfrac{2}{1+\sqrt{ab}}\)

\(=\dfrac{\left(1+b\right)\left(1+\sqrt{ab}\right)}{\left(1+a\right)\left(1+b\right)\left(1+\sqrt{ab}\right)}+\dfrac{\left(1+a\right)\left(1+\sqrt{ab}\right)}{\left(1+a\right)\left(1+b\right)\left(1+\sqrt{ab}\right)}-\dfrac{2\left(1+a\right)\left(1+b\right)}{\left(1+a\right)\left(1+b\right)\left(1+\sqrt{ab}\right)}\)

\(=\dfrac{1+b+\sqrt{ab}+b\sqrt{ab}}{\left(1+a\right)\left(1+b\right)\left(1+\sqrt{ab}\right)}+\dfrac{1+a+\sqrt{ab}+a\sqrt{ab}}{\left(1+a\right)\left(1+b\right)\left(1+\sqrt{ab}\right)}-\dfrac{2+2a+2b+2ab}{\left(1+a\right)\left(1+b\right)\left(1+\sqrt{ab}\right)}\)

\(=\dfrac{-a-b+2\sqrt{ab}+a\sqrt{ab}+b\sqrt{ab}-2ab}{\left(1+a\right)\left(1+b\right)\left(1+\sqrt{ab}\right)}\)

\(=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2\left(\sqrt{ab}-1\right)}{\left(1+a\right)\left(1+b\right)\left(1+\sqrt{ab}\right)}\ge0\forall x,y\ge1\)

Đẳng thức xảy ra khi \(a=b=1\)

28 tháng 8 2021

 

dùng phương pháp hình học cm câu a 

đặt BH =a , HC =c kẻ HA =b 

theo định lí py ta go ta có 

AB=a2+b2;AC=b2+c2;BC=a+b

dễ thấy AB.AC\(\ge\) 2SABC=BC.AH

(a2+b2).(b2+c2)\(\ge\)b.(a+c)

17 tháng 6 2017

b)

=>2x+1=3/5

2x=3/5-1

2x=-2/5

x=-2/5:2

x=-1/5

hoặc:

2x+1=-3/5

2x=-3/5-1

2x=-8/5

x=-8/5:2

x=-4/5

=>x=-1/5 hoặc x=-4/5

17 tháng 6 2017

\(a.x^{2017}=x\)

Vì 0^2017 = 0

    1^2017 = 1

=> x = 0 hoặc x = 1

29 tháng 6 2021

`a)sqrtx=sqrt{16+6sqrt7}`

`=sqrt{9+2.3sqrt7+7}`

`=sqrt{(3+sqrt7)^2}`

`=3+sqrt7`

`b)sqrtx=sqrt{4-2sqrt3}=sqrt{3-2sqrt3+1}=sqrt{(sqrt3-1)^2}=sqrt3-1`

`c)sqrtx=sqrt{13+4sqrt3}=sqrt{12+2.2sqrt3+1}=sqrt{(2sqrt3+1)^2}=2sqrt3+1`

29 tháng 6 2021

a) \(x=16+6\sqrt{7}\)

\(\Rightarrow\sqrt{x}=\sqrt{16+6\sqrt{7}}\)

\(\Rightarrow\sqrt{x}=\sqrt{7+6\sqrt{7}+9}\)

\(\Rightarrow\sqrt{x}=\sqrt{7+6\sqrt{7}+3^2}\)

\(\Rightarrow\sqrt{x}=\sqrt{\left(\sqrt{7}+3\right)^2}\)

\(\Rightarrow\left(\sqrt{x}\right)^2=\sqrt{\left(\sqrt{7}+3\right)^2}\)

\(\Rightarrow\sqrt{7}+3\)

KL: x=\(\sqrt{7}+3\)

 

7 tháng 6 2021

\(\frac{16}{81}=\left(\frac{4}{9}\right)^2=\left(-\frac{4}{9}\right)^2=\left(\frac{2}{3}\right)^2=\left(-\frac{2}{3}\right)^2\)

7 tháng 6 2021

lộn rồi

\(\frac{16}{81}=\left(\frac{4}{9}\right)^2=\left(-\frac{4}{9}\right)^2=\left(\frac{2}{3}\right)^4=\left(-\frac{2}{3}\right)^4\)

;-;

1 tháng 5 2023

Câu 10 của em đây nhé:

\(\dfrac{17}{2}\) \(\times\) \(\dfrac{3}{5}\) + \(\dfrac{3}{5}\) \(\times\) \(\dfrac{1}{2}\) + \(\dfrac{3}{5}\)

\(\dfrac{17}{2}\) \(\times\) \(\dfrac{3}{5}\) + \(\dfrac{3}{5}\) \(\times\) \(\dfrac{1}{2}\) + \(\dfrac{3}{5}\) \(\times\) 1

\(\dfrac{3}{5}\) \(\times\) ( \(\dfrac{17}{2}\) + \(\dfrac{1}{2}\) + 1)

\(\dfrac{3}{5}\) \(\times\) ( \(\dfrac{18}{2}\) + 1)

\(\dfrac{3}{5}\) \(\times\) ( 9 + 1)

\(\dfrac{3}{5}\) \(\times\) 10

= 6

1 tháng 5 2023

Mn giải chi tiết giúp mik với