Ai hộ mình câu b với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
10. Câu này chứng minh BĐT BSC:
\(\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}\ge\sqrt{\left(ab+bc\right)^2}=b\left(a+c\right)\)
11.
Ta có: \(\dfrac{1}{1+a}+\dfrac{1}{1+b}-\dfrac{2}{1+\sqrt{ab}}\)
\(=\dfrac{\left(1+b\right)\left(1+\sqrt{ab}\right)}{\left(1+a\right)\left(1+b\right)\left(1+\sqrt{ab}\right)}+\dfrac{\left(1+a\right)\left(1+\sqrt{ab}\right)}{\left(1+a\right)\left(1+b\right)\left(1+\sqrt{ab}\right)}-\dfrac{2\left(1+a\right)\left(1+b\right)}{\left(1+a\right)\left(1+b\right)\left(1+\sqrt{ab}\right)}\)
\(=\dfrac{1+b+\sqrt{ab}+b\sqrt{ab}}{\left(1+a\right)\left(1+b\right)\left(1+\sqrt{ab}\right)}+\dfrac{1+a+\sqrt{ab}+a\sqrt{ab}}{\left(1+a\right)\left(1+b\right)\left(1+\sqrt{ab}\right)}-\dfrac{2+2a+2b+2ab}{\left(1+a\right)\left(1+b\right)\left(1+\sqrt{ab}\right)}\)
\(=\dfrac{-a-b+2\sqrt{ab}+a\sqrt{ab}+b\sqrt{ab}-2ab}{\left(1+a\right)\left(1+b\right)\left(1+\sqrt{ab}\right)}\)
\(=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2\left(\sqrt{ab}-1\right)}{\left(1+a\right)\left(1+b\right)\left(1+\sqrt{ab}\right)}\ge0\forall x,y\ge1\)
Đẳng thức xảy ra khi \(a=b=1\)
b)
=>2x+1=3/5
2x=3/5-1
2x=-2/5
x=-2/5:2
x=-1/5
hoặc:
2x+1=-3/5
2x=-3/5-1
2x=-8/5
x=-8/5:2
x=-4/5
=>x=-1/5 hoặc x=-4/5
\(a.x^{2017}=x\)
Vì 0^2017 = 0
1^2017 = 1
=> x = 0 hoặc x = 1
`a)sqrtx=sqrt{16+6sqrt7}`
`=sqrt{9+2.3sqrt7+7}`
`=sqrt{(3+sqrt7)^2}`
`=3+sqrt7`
`b)sqrtx=sqrt{4-2sqrt3}=sqrt{3-2sqrt3+1}=sqrt{(sqrt3-1)^2}=sqrt3-1`
`c)sqrtx=sqrt{13+4sqrt3}=sqrt{12+2.2sqrt3+1}=sqrt{(2sqrt3+1)^2}=2sqrt3+1`
a) \(x=16+6\sqrt{7}\)
\(\Rightarrow\sqrt{x}=\sqrt{16+6\sqrt{7}}\)
\(\Rightarrow\sqrt{x}=\sqrt{7+6\sqrt{7}+9}\)
\(\Rightarrow\sqrt{x}=\sqrt{7+6\sqrt{7}+3^2}\)
\(\Rightarrow\sqrt{x}=\sqrt{\left(\sqrt{7}+3\right)^2}\)
\(\Rightarrow\left(\sqrt{x}\right)^2=\sqrt{\left(\sqrt{7}+3\right)^2}\)
\(\Rightarrow\sqrt{7}+3\)
KL: x=\(\sqrt{7}+3\)
\(\frac{16}{81}=\left(\frac{4}{9}\right)^2=\left(-\frac{4}{9}\right)^2=\left(\frac{2}{3}\right)^2=\left(-\frac{2}{3}\right)^2\)
Câu 10 của em đây nhé:
\(\dfrac{17}{2}\) \(\times\) \(\dfrac{3}{5}\) + \(\dfrac{3}{5}\) \(\times\) \(\dfrac{1}{2}\) + \(\dfrac{3}{5}\)
= \(\dfrac{17}{2}\) \(\times\) \(\dfrac{3}{5}\) + \(\dfrac{3}{5}\) \(\times\) \(\dfrac{1}{2}\) + \(\dfrac{3}{5}\) \(\times\) 1
= \(\dfrac{3}{5}\) \(\times\) ( \(\dfrac{17}{2}\) + \(\dfrac{1}{2}\) + 1)
= \(\dfrac{3}{5}\) \(\times\) ( \(\dfrac{18}{2}\) + 1)
= \(\dfrac{3}{5}\) \(\times\) ( 9 + 1)
= \(\dfrac{3}{5}\) \(\times\) 10
= 6