Tìm x, y là các số tự nhiên thỏa mãn 10 x y 30 và x ƯCLN 2y 5 3y 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Answer:
Có \(ƯCLN\left(2y+5;3y+2\right)=x\) nên có:
\(\hept{\begin{cases}2y+5⋮x\\3y+2⋮x\end{cases}}\Rightarrow3\left(2y+5\right)-2\left(3y+2\right)⋮x\Rightarrow11⋮x\Rightarrow x\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
Mà x > 10 => x = 11
Với x = 11, lại có y < 30
\(\Rightarrow2y+5< 65;2y+5⋮11\)
Các số bé hơn 65 và chia hết cho 11 là: 22; 33; 44; 55 và 3y + 2 cũng chia hết cho 11
Trường hợp 1: \(2y+5=11\)
\(\Rightarrow y=3\)
\(\Rightarrow3y+2=11⋮11\) (Thoả mãn)
Trường hợp 2: \(2y+5=22\)
\(\Rightarrow2y=17\) (Loại)
Trường hợp 3: \(2y+5=33\)
\(\Rightarrow y=14\)
\(\Rightarrow3y+2=44⋮11\) (Thoả mãn)
Trường hợp 4: \(2y+5=44\)
\(\Rightarrow2y=39\) (Loại)
Trường hợp 5: \(2y+5=55\)
\(\Rightarrow y=25\)
\(\Rightarrow3y+2=77⋮11\) (Thoả mãn)
Vậy x = 11 và \(y\in\left\{3;14;25\right\}\)
Do x=ƯCLN(2y+5;3y+2) nên ta có:
{(2�+5)⋮�(3�+2)⋮�⎩⎨⎧(2y+5)⋮x(3y+2)⋮x⇒{3(2�+5)⋮�2(3�+2)⋮�⇒⎩⎨⎧3(2y+5)⋮x2(3y+2)⋮x
⇔{(6�+15)⋮�(6�+4)⋮�⇔⎩⎨⎧(6y+15)⋮x(6y+4)⋮x
⇒[(6�+15)−(6�+4)]⋮�⇒[(6y+15)−(6y+4)]⋮x
⇔11⋮�⇒�∈Ư(11)⇔11⋮x⇒x∈Ư(11)⇒...⇒... CHÚC BẠN HỌC TỐT
Do x=ƯCLN(2y+5;3y+2) nên ta có:
\(\left\{{}\begin{matrix}\left(2y+5\right)⋮x\\\left(3y+2\right)⋮x\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}3\left(2y+5\right)⋮x\\2\left(3y+2\right)⋮x\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(6y+15\right)⋮x\\\left(6y+4\right)⋮x\end{matrix}\right.\)
\(\Rightarrow\left[\left(6y+15\right)-\left(6y+4\right)\right]⋮x\)
\(\Leftrightarrow11⋮x\Rightarrow x\inƯ\left(11\right)\)\(\Rightarrow...\)
a) Vì x chia hết cho 2 nên tận cùng là 0, 2,4,6,8
Mà 30 < x < 50
=> x={32;34;36;38;40;42;44;46;48}
b)Vì x chia hết cho cả 2,5 nên x có tân cùng là 0
Mà: 10<y<90
=>x={20;30;40;50;60;70;80}
Do x là UCLN ( 2y + 5 ; 3y + 2 ) nên
2y + 5 chia hết cho x (1)=> 6y + 15 chia hết cho x (3)
3y + 2 chia hết cho x (2)=> 6y + 4 chia hết cho x(4)
Lấy (3) trừ cho (4) ta được 11 chia hết cho x
=> x thuộc Ư(11) mà x > 10
=> x = 11
Lấy (2) trừ (1) ta được y - 3 chia hết cho x hay y - 3 chia hết cho 11
Mà y > 10 và y <30> y -3 > 7 và y - 3 < 27> y - 3 =11 hoặc y - 3 = 22 => y = 14 hoặc y = 25
Xét y = 14 => 2y + 5 = 33 và 3y + 2 =44 ( thỏa mãn )
Xét y = 25 => 2y + 5 = 55 và 3y + 2 = 77 ( thỏa mãn )
Vậy x =11 và y =14 hoặc x = 11 và y =25
Đây là Toán mà