Tìm x thuộc N biết:
2.2^2 + 3.2^3 + 4,2^4 +...+ x.2^x = 2x^10
Giúp mình với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`#3107`
b)
`2.3^x = 162`
`\Rightarrow 3^x = 162 \div 2`
`\Rightarrow 3^x = 81`
`\Rightarrow 3^x = 3^4`
`\Rightarrow x = 4`
Vậy, `x = 4`
c)
`(2x - 15)^5 = (2 - 15)^3`
\(\Rightarrow \)`(2x - 15)^5 - (2x - 15)^3 = 0`
\(\Rightarrow \)`(2x - 15)^3 . [ (2x - 15)^2 - 1] = 0`
\(\Rightarrow\left[{}\begin{matrix}\left(2x-15\right)^3=0\\\left(2x-15\right)^2-1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}2x-15=0\\\left(2x-15\right)^2=1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}2x=15\\\left(2x-15\right)^2=\left(\pm1\right)^2\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{15}{2}\\2x-15=1\\2x-15=-1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{15}{2}\\2x=16\\2x=-14\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{15}{2}\\x=8\\x=-7\end{matrix}\right.\)
Vậy, `x \in`\(\left\{-7;8;\dfrac{15}{2}\right\}.\)
`d)`
\(3^{x+2}-5.3^x=?\) Bạn ghi tiếp đề nhé!
`e)`
\(7\cdot4^{x-1}+4^{x-1}=23?\)
\(4^{x-1}\cdot\left(7+1\right)=23\\ \Rightarrow4^{x-1}\cdot8=23\\ \Rightarrow4^{x-1}=\dfrac{23}{8}\)
Bạn xem lại đề!
`f)`
\(2\cdot2^{2x}+4^3\cdot4^x=1056\)
\(\Rightarrow2\cdot2^{2x}+\left(2^2\right)^3\cdot\left(2^2\right)^x=1056\\ \Rightarrow2\cdot2^{2x}+2^6\cdot2^{2x}=1056\\ \Rightarrow2^{2x}\cdot\left(2+2^6\right)=1056\\ \Rightarrow2^{2x}\cdot66=1056\\ \Rightarrow2^{2x}=1056\div66\\ \Rightarrow2^{2x}=16\\ \Rightarrow2^{2x}=2^4\\ \Rightarrow2x=4\\ \Rightarrow x=2\)
Vậy, `x = 2`
_____
\(10 -{[(x \div 3+17) \div 10+3.2^4] \div 10}=5\)
\(\Rightarrow\left[\left(x\div3+17\right)\div10+48\right]\div10=10-5\)
\(\Rightarrow\left[\left(x\div3+17\right)\div10+48\right]\div10=5\)
\(\Rightarrow\left(x\div3+17\right)\div10+48=50\)
\(\Rightarrow\left(x\div3+17\right)\div10=2\)
\(\Rightarrow x\div3+17=20\)
\(\Rightarrow x\div3=3\\ \Rightarrow x=9\)
Vậy, `x = 9.`
`|2x+1|-3=x+4`
`<=>|2x+1|=x+4+3=x+7(x>=-7)`
`**2x+1=x+7`
`<=>x=7-1=6(tm)`
`**2x+1=-x-7`
`<=>3x=-6`
`<=>x=-2(tm)`
`|3x-5|=1-3x(x<=1/3)`
`**3x-5=1-3x`
`<=>6x=6`
`<=>x=1(l)`
`**3x-5=3x-1`
`<=>-5=-1` vô lý
`|2x+2|+|x-1|=10`
Nếu `x>=1`
`pt<=>2x+2+x-1=10`
`<=>3x+1=10`
`<=>3x=9`
`<=>x=3(tm)`
Nếu `x<=-1`
`pt<=>-2x-2+1-x=10`
`<=>-1-3x=10`
`<=>-11=3x`
`<=>x=-11/3(tm)`
Nếu `-1<=x<=1`
`pt<=>2x+2+1-x=10`
`<=>x+3=10`
`<=>x=7(l)`
Vậy `S={3,-11/3}`
1)
xy + x - 4y = 12
x + y(x - 4) = 12
y(x - 4) = 12 - x
\(y=\dfrac{-x+12}{x-4}\)
Vì \(x,y\inℕ\) nên
\(\left(-x+12\right)⋮\left(x-4\right)\)
\(\left(-x+12\right)-\left(x-4\right)⋮\left(x-4\right)\)
\(16⋮\left(x-4\right)\)
\(\left(x-4\right)\inƯ\left(16\right)\)
\(\left(x-4\right)\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)
\(x\in\left\{5;3;6;2;8;0;12;-4;20;-12\right\}\)
\(y\in\left\{\dfrac{-5+12}{5-4};\dfrac{-3+12}{3-4};\dfrac{-6+12}{6-4};\dfrac{-2+12}{2-4};\dfrac{-8+12}{8-4};\dfrac{-0+12}{0-4};\dfrac{-12+12}{12-4};\dfrac{4+12}{-4-4};\dfrac{-20+12}{20-4};\dfrac{12+12}{-12-4}\right\}\)
\(y\in\left\{7;-9;3;-5;1;-3;0;-2;-\dfrac{1}{2};-\dfrac{7}{5}\right\}\)
\(\left(x;y\right)\in\left\{\left(5;7\right);\left(3;-9\right);\left(6;3\right);\left(2;-5\right);\left(8;1\right);\left(0;-3\right);\left(12;0\right);\left(-4;-2\right);\left(20;-\dfrac{1}{2}\right);\left(-12;-\dfrac{7}{5}\right)\right\}\)
Mà \(x,y\inℕ\) nên các giá trị cần tìm là \(\left(x;y\right)\in\left\{\left(5;7\right);\left(6;3\right);\left(8;1\right);\left(12;0\right)\right\}\)
2)
(2x + 3)(y - 2) = 15
\(\left(2x+3\right)\inƯ\left(15\right)\)
\(\left(2x+3\right)\in\left\{1;-1;3;-3;5;-5;15;-15\right\}\)
Ta lập bảng
2x + 3 | 1 | -1 | 3 | -3 | 5 | -5 | 15 | -15 |
y - 2 | 15 | -15 | 5 | -5 | 3 | -3 | 1 | -1 |
(x; y) | (-1; 17) | (-2; -13) | (0; 7) | (-3; -3) | (1; 5) | (-4; -1) | (6; 3) | (-9; 1) |
Mà \(x,y\inℕ\) nên các giá trị cần tìm là \(\left(x;y\right)\in\left\{\left(0;7\right);\left(1;5\right);\left(6;3\right)\right\}\)
Để tìm số tự nhiên n thoả mãn phương trình 2.2^2 + 3.2^3 + 3.2^4 + ... + n.2^n = 2^n + 11, chúng ta có thể thử từng giá trị của n cho đến khi phương trình được thỏa mãn.
Bắt đầu với n = 1: 2.2^2 = 2^2 + 11 8 = 4 + 11 8 = 15 Phương trình không thỏa mãn.
Tiếp tục với n = 2: 2.2^2 + 3.2^3 = 2^2 + 11 8 + 24 = 4 + 11 32 = 15 Phương trình không thỏa mãn.
Tiếp tục với n = 3: 2.2^2 + 3.2^3 + 3.2^4 = 2^3 + 11 8 + 24 + 48 = 8 + 11 80 = 19 Phương trình không thỏa mãn.
Tiếp tục với n = 4: 2.2^2 + 3.2^3 + 3.2^4 + 4.2^4 = 2^4 + 11 8 + 24 + 48 + 64 = 16 + 11 144 = 27 Phương trình không thỏa mãn.
Tiếp tục với n = 5: 2.2^2 + 3.2^3 + 3.2^4 + 4.2^4 + 5.2^5 = 2^5 + 11 8 + 24 + 48 + 64 + 160 = 32 + 11 304 = 43 Phương trình không thỏa mãn.
Tiếp tục với n = 6: 2.2^2 + 3.2^3 + 3.2^4 + 4.2^4 + 5.2^5 + 6.2^6 = 2^6 + 11 8 + 24 + 48 + 64 + 160 + 384 = 64 + 11 688 = 75 Phương trình không thỏa mãn.
Tiếp tục với n = 7: 2.2^2 + 3.2^3 + 3.2^4 + 4.2^4 + 5.2^5 + 6.2^6 + 7.2^7 = 2^7 + 11 8 + 24 + 48 + 64 + 160 + 384 + 896 = 128 + 11 2576 = 139 Phương trình không thỏa mãn.
Tiếp tục với n = 8: 2.2^2 + 3.2^3 + 3.2^4 + 4.2^4 + 5.2^5 + 6.2^6 + 7.2^7 + 8.2^8 = 2^8 + 11 8 + 24 + 48 + 64 + 160 + 384 + 896 + 2048 = 256 + 11 4576 = 267 Phương trình không thỏa mãn.
Tiếp tục với n = 9: 2.2^2 + 3.2^3 + 3.2^4 + 4.2^4 + 5.2^5 + 6.2^6 + 7.2^7 + 8.2^8 + 9.2^9 = 2^9 + 11 8 + 24 + 48 + 64 + 160 + 384 + 896 + 2048 + 4608 = 512 + 11 9600 = 523 Phương trình không thỏa mãn.
Tiếp tục với n = 10: 2.2^2 + 3.2^3 + 3.2^4 + 4.2^4 + 5.2^5 + 6.2^6 + 7.2^7 + 8.2^8 + 9.2^9 + 10.2^10 = 2^10 + 11 8 + 24 + 48 + 64 + 160 + 384 + 896 + 2048 + 4608 + 10240 = 1024 + 11 23840 = 1035 Phương trình không thỏa mãn.
Như vậy, sau khi thử tất cả các giá trị của n từ 1 đến 10, ta thấy không có số tự nhiên n nào thỏa mãn phương trình đã cho.
Áp dụng t/c dtsbn:
\(\dfrac{x}{15}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{t}{1}=\dfrac{x-y+z-t}{15-7+3-1}=\dfrac{10}{10}=1\)
\(\Rightarrow\left\{{}\begin{matrix}x=15\\y=7\\z=3\\t=1\end{matrix}\right.\)