Cho A=\(\frac{5^{2021}+1}{5^{2022}+1}\)và B=\(\frac{5^{2020}+1}{5^{2021}+1}\)
Hãy so sánh A và B.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
2A=2.(12+122+123+...+122020+122021)2�=2.12+122+123+...+122 020+122 021
2A=1+12+122+123+...+122019+1220202�=1+12+122+123+...+122 019+122 020
Suy ra: 2A−A=(1+12+122+123+...+122019+122020)2�−�=1+12+122+123+...+122 019+122 020
−(12+122+123+...+122020+122021)−12+122+123+...+122 020+122 021
Do đó A=1−122021<1�=1−122021<1.
Lại có B=13+14+15+1360=20+15+12+1360=6060=1�=13+14+15+1360=20+15+12+1360=6060=1.
Vậy A < B.
Ta có : A = \(\frac{10^{2020}+1}{10^{2021}+1}\)
=> 10A = \(\frac{10^{2021}+10}{10^{2021}+1}=1+\frac{9}{10^{2021}+1}\)
Lại có : \(B=\frac{10^{2021}+1}{10^{2022}+1}\)
=> \(10B=\frac{10^{2022}+10}{10^{2022}+1}=1+\frac{9}{10^{2022}+1}\)
Vì \(\frac{9}{10^{2022}+1}< \frac{9}{10^{2021}+1}\)
=> \(1+\frac{9}{10^{2022}+1}< 1+\frac{9}{10^{2022}+1}\)
=> 10B < 10A
=> B < A
b) Ta có : \(\frac{2019}{2020+2021}< \frac{2019}{2020}\)
Lại có : \(\frac{2020}{2020+2021}< \frac{2020}{2021}\)
=> \(\frac{2019}{2020+2021}+\frac{2020}{2020+2021}< \frac{2019}{2020}+\frac{2020}{2021}\)
=> \(\frac{2019+2020}{2020+2021}< \frac{2019}{2020}+\frac{2020}{2021}\)
=> B < A
A = \(\dfrac{5^{2020}+1}{5^{2021}+1}\) ⇒ A \(\times\) 10 = 2 \(\times\)5 \(\times\) \(\dfrac{5^{2020}+1}{5^{2021}+1}\) =2\(\times\) \(\dfrac{5^{2021}+5}{5^{2021}+1}\)
10A =2 \(\times\) \(\dfrac{5^{2021}+5}{5^{2021}+1}\) = 2 \(\times\)(1 + \(\dfrac{4}{5^{2021}+1}\) )= 2 + \(\dfrac{8}{5^{2021}+1}\) >2
B = \(\dfrac{10^{2019}+1}{10^{2020}+1}\) ⇒ B \(\times\) 10 = 10 \(\times\) \(\dfrac{10^{2019}+1}{10^{2020}+1}\)= \(\dfrac{10^{2020}+10}{10^{2020}+1}\)
10B = \(\dfrac{10^{2020}+10}{10^{2020}+1}\) = 1 + \(\dfrac{9}{10^{2020}+1}\) < 2
10A > 2 > 10B ⇒ 10A>10B ⇒ A>B
Lời giải:
$10A=\frac{10^{2021}-10}{10^{2021}-1}=\frac{10^{2021}-1-9}{10^{2021}-1}$
$=1-\frac{9}{10^{2021}-1}>1$
$10B=\frac{10^{2022}+10}{10^{2022}+1}=\frac{10^{2022}+1+9}{10^{2022}+1}$
$=1+\frac{9}{10^{2022}+1}<1$
$\Rightarrow 10A> 1> 10B$
Suy ra $A> B$
ta có :
A = \(\dfrac{5^{2020}+1}{5^{2020}+1}\)
B = \(\dfrac{5^{2019}+1}{5^{2020}+1}\)
\(\Leftrightarrow\) B < A
a) Ta có: \( - 2 = \frac{{ - 2}}{1} = \frac{{ - 40}}{{20}}\)
\(\frac{{ - 11}}{5} = \frac{{ - 44}}{{20}} < \frac{{ - 40}}{{20}}\) nên \(\frac{{ - 11}}{5} < -2\).
\(\frac{{ - 7}}{4} = \frac{{ - 7.5}}{{4.5}} = \frac{{ - 35}}{{20}} > \frac{{ - 40}}{{20}}\) nên \(\frac{{ - 7}}{4} > -2\)
Vậy \(\frac{{ - 11}}{5} < \frac{{ - 7}}{4}\).
b) Ta có: \(\frac{{2020}}{{ - 2021}} = \frac{{ - 2020}}{{2021}} > \frac{{ - 2022}}{{2021}}\)
Vậy \(\frac{{2020}}{{ - 2021}} > \frac{{ - 2022}}{{2021}}\)
\(5A=\dfrac{5^{2022}+5}{5^{2022}+1}=1+\dfrac{4}{5^{2022}+1}\)
Sửa đề: \(B=\dfrac{5^{2020}+1}{5^{2021}+1}\)
=>\(5B=\dfrac{5^{2021}+5}{5^{2021}+1}=1+\dfrac{4}{5^{2021}+1}\)
5^2022>5^2021
=>5^2022+1>5^2021+1
=>5A<5B
=>A<B
\(2.A=\frac{2^{2021}-2}{2^{2021}-1}=1-\frac{1}{2^{2021}-1}\)
\(2B=\frac{2^{2022}-2}{2^{2022}-1}=1-\frac{1}{2^{2022}-1}\)
dó \(\frac{1}{2^{2022}-1}< \frac{1}{2^{2021}-1}\Rightarrow1-\frac{1}{2^{2022}-1}>1-\frac{1}{2^{2021}-1}\Rightarrow A< B\)
HT
Ta có: \(B=2020.2021.2022=\left(2021-1\right).\left(2021+1\right).2021=\left(2021-1\right)^2.2021< 2021^2.2021=A\)
\(A=\frac{5^{2021}+1}{5^{2022}+1}\Leftrightarrow10A=\frac{5^{2022}+10}{5^{2022}+1}=1+\frac{9}{5^{2022}+1}\)
\(B=\frac{5^{2020}+1}{5^{2021}+1}\Leftrightarrow10B=\frac{5^{2021}+10}{5^{2021}+1}=1+\frac{9}{5^{2021}+1}\)
Vì\(\frac{9}{5^{2022}+1}< \frac{9}{5^{2021}+1}\left(10A< 10B\right)\Leftrightarrow A< B\)Vậy\(A< B\)
A=52022+152021+1⇔10A=52022+152022+10=1+52022+19
�=52020+152021+1⇔10�=52021+1052021+1=1+952021+1B=52021+152020+1⇔10B=52021+152021+10=1+52021+19
Vì952022+1<952021+1(10�<10�)⇔�<�52022+19<52021+19(10A<10B)⇔A<BVậy�<�A<B