Cho tam giác ABC đều, O là trung điểm của BC, vẽ xOy = 60 độ, Ox cắt AB tại M, Oy cắt AC tại N.
a) CM: tam giác OBM đồng dạng tam giác NCO và BC2 = 4BM.CN
b) CM; MO và NO là phân giác góc BMN và MNC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
a.
\(\widehat{BMO}+\widehat{B}+\widehat{BOM}=\widehat{BOM}+\widehat{MON}+\widehat{CON}=180^0\)
\(\Rightarrow\widehat{BMO}=\widehat{CON}\) (do \(\widehat{B}=\widehat{MON}=60^0\))
\(\Rightarrow\left\{{}\begin{matrix}\widehat{B}=\widehat{C}=60^0\\\widehat{BMO}=\widehat{CON}\end{matrix}\right.\) \(\Rightarrow\Delta OBM\sim\Delta NCO\) (g.g)
b.
Từ câu a \(\Rightarrow\dfrac{OB}{CN}=\dfrac{BM}{OC}\Rightarrow OB.OC=BM.CN\Rightarrow\dfrac{BC}{2}.\dfrac{BC}{2}=BM.CN\Rightarrow...\)
c.
Lần lượt kẻ OD và OE vuông góc MN và AB.
Do O cố định \(\Rightarrow\) OE cố định
Từ câu a ta có: \(\dfrac{BM}{OC}=\dfrac{OM}{ON}\Rightarrow\dfrac{BM}{OM}=\dfrac{OC}{ON}=\dfrac{OB}{ON}\) (1)
Đồng thời \(\widehat{B}=\widehat{MON}=60^0\) (2)
(1);(2) \(\Rightarrow\Delta OBM\sim\Delta NOM\left(c.g.c\right)\Rightarrow\widehat{BMO}=\widehat{OMN}\)
\(\Rightarrow\Delta_VOME=\Delta_VOMD\left(ch-gn\right)\)
\(\Rightarrow OD=OE\), mà OE cố định \(\Rightarrow OD\) cố định
-Làm 1 tỷ lần dạng này rồi ;-; .
a.-\(\widehat{BEO}=180^0-\widehat{OBE}-\widehat{EOB}=180^0-\widehat{EOF}-\widehat{EOB}=\widehat{COF}\).
-△OBE và △FCO có: \(\widehat{BEO}=\widehat{COF};\widehat{OBE}=\widehat{FCO}=60^0\)
\(\Rightarrow\)△OBE∼△FCO (g-g).
\(\Rightarrow\dfrac{OB}{FC}=\dfrac{BE}{CO}\Rightarrow OB.OC=BE.CF\Rightarrow\dfrac{1}{2}BC.\dfrac{1}{2}BC=BE.CF\Rightarrow BC^2=4BE.CF\)
b. △OBE∼△FCO \(\Rightarrow\dfrac{OE}{OF}=\dfrac{BE}{CO}\Rightarrow\dfrac{OE}{OF}=\dfrac{BE}{OB}\Rightarrow\dfrac{BE}{OE}=\dfrac{OB}{OF}\)
-△OBE và △FOE có: \(\widehat{OBE}=\widehat{FOE}=60^0;\dfrac{BE}{OE}=\dfrac{OB}{OF}\)
\(\Rightarrow\)△OBE∼△FOE (c-g-c).
\(\Rightarrow\widehat{BEO}=\widehat{OEF}\) nên EO là tia phân giác góc BEF.
Ta có : \(\widehat{BOM}\)+ \(\widehat{MON}\)+ \(\widehat{NOC}\)= \(180^0\) (kề bù)
\(\widehat{BOM}\)+ \(60^0\) + \(\widehat{NOC}\)= \(180^0\)
\(\widehat{BOM}\)+ \(\widehat{NOC}\) = \(120^0\) \(\left(1\right)\)
\(X\text{ét}\)\(\Delta NOC\)có :
\(\widehat{NOC}\)+ \(\widehat{ONC}\) + \(\widehat{NCO}\)= \(180^0\)
\(\widehat{NOC}\) + \(\widehat{ONC}\) + \(60^0\) = \(180^0\)
\(\widehat{NOC}\) + \(\widehat{ONC}\) = \(120^0\) \(\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)=) \(\widehat{BOM}\)= \(\widehat{ONC}\)
\(X\text{ét}\)\(\Delta OBM\)Và \(\Delta NCO\)có :
\(\widehat{MBO}\)= \(\widehat{OCN}\) ( cùng bằng 600 )
\(\widehat{BOM}\)= \(\widehat{ONC}\) ( chứng minh trên )
=) \(\Delta OBM\)đồng dạng với \(\Delta NCO\)( g-g )
Do \(\Delta OBM\) đồng dạng với \(\Delta NCO\)
=) \(\frac{BM}{CO}=\frac{OM}{ON}\)
Mà BO = OC
=) \(\frac{BM}{BO}=\frac{OM}{ON}\)
\(X\text{ét}\)\(\Delta OBM\) Và \(\Delta NOM\) có :
\(\frac{BM}{BO}=\frac{OM}{ON}\)
\(\widehat{B}\)\(=\)\(\widehat{MON}\) (cùng bằng \(60^0\))
=) \(\Delta OBM\)đồng dạng với \(\Delta NOM\) ( c - g - c )
Answer:
a) Ta có:
Góc NOC = 180 độ - góc MON - góc MOB
Góc NOC = 180 độ - góc MBO - góc MOB
Góc NOC = góc BMO
Xét tam giác MBO và tam giác OCN
Góc MBO = góc OCN = 60 độ
Góc BMO = góc NOC
=> Tam giác MBO ~ tam giác OCN (g-g)
=> \(\frac{MO}{ON}=\frac{BO}{CN}=\frac{MB}{OC}\)
b) Do O là trung điểm BC => OC = BO
\(\Rightarrow\frac{MO}{ON}=\frac{MB}{OB}\)
\(\Rightarrow\frac{MO}{MB}=\frac{ON}{OB}\)
\(\Rightarrow\frac{OB}{NO}=\frac{MB}{MO}\)
Xét tam giác OBM và tam giác NOM
Góc OBM = góc NOM = 60 độ
\(\frac{MB}{MO}=\frac{OB}{NO}\)
=> Tam giác OBM ~ tam giác NOM (c-g-c)
=> Góc OMB = góc OMN
=> MO là tia phân giác góc BMN