Cho tam giác ABC vuông tại A, AB = 15cm,AC=20cm.kẻ đường cao AH.
a.chứng minh AB^2=BH.Bc.Suy ra độ dài đoạn thẳng Bc và CH
b.kẻ HM vuông góc với AB và HN vuông góc với AC.chứng minh AM.AB=AN.AC.Suy ra tam giác AMN đồng dạng với tam giác ACB
c.cho HN=9,6 cm.tính diện tích hình chữ nhật ANHM?
một người đi từ A đến B với vận tốc 12km/h,khi từ B về A người đó đi đương khác dài hơn đường cũ 5km nhưng đường dễ đi nên đi với vận tốc 15km/h. vì vậy thời gian lúc về ít hơn thời gian lúc đi 25 phút. Tính quãng đương AB lúc đi
bạn ơi giải hộ tui vs
a: XétΔABC vuông tại A có AH là đường cao
nên \(AB^2=BH\cdot BC\)
\(BC=\sqrt{15^2+20^2}=25\left(cm\right)\)
\(CH=\dfrac{AC^2}{CB}=\dfrac{20^2}{25}=16\left(cm\right)\)
b: Xet ΔAHB vuông tại H có HM là đường cao
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
=>AM/AC=AN/AB
Xet ΔAMN vuông tại A và ΔACB vuông tại A có
AM/AC=AN/AB
Do đo: ΔAMN\(\sim\)ΔACB