Bài 5( 1 điểm)
Chứng minh rằng: A = 1027 + 8 chia hết cho 72.
Nhớ giải chi tiết mình like cho .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn ơi bạn chỉ cần biến đổi làm sao cho nguyên vế đó trở thành dạng 5 x ( ...) hoặc là bạn nói nó là bội của 5 thì bạn sẽ kết luận được nó chia hết cho 5 nhé , còn chia hết cho 2 cũng vậy đấy !
bạn hãy nhân đa thức với đa thức nhé !
Mình hướng dẫn bạn rồi đấy ! ok!
k nha !
Ta có 20a20a20a = 20a*1000000 + 20a*1000 + 20a
= 20a*(1000000 + 1000 + 1)=20a*101001 do101001 không chia hết cho 7
nên 20a chia hết cho 7mà 20a=2*100+a=200+a=203-3+a
203 chia hết cho 7
=> a-3 \(\in\) B(7) = {0; 7; 14 ...} mà 0≤a≤9
nên a-3 = 0
Vậy a = 3
10^28+8=10^25.10^3+8
=10^25.1008
Vì 1008 chia hết cho 72 nên 10^28+8 chia hết cho 72
a/ \(8^5+2^{11}=\left(2^3\right)^5+2^{11}=2^{15}+2^{11}=2^{11}\left(2^4+1\right)=2^{22}\cdot17\)
17 chia hết 17 nên 222 . 17 chia hết 17 => dpcm
b/ \(19^{19}+69^{19}=\left(19+69\right)\left(19^{19-1}-19^{19-2}\cdot69+19^{19-3}\cdot69^2-19^{19-4}\cdot69^3+...+69^{19-1}\right)\)
\(=88\cdot\left(19^{18}-19^{17}\cdot69+...+69^{18}\right)\)
88 chia hết 44 nên \(88\cdot\left(19^{18}-19^{17}\cdot69+...+69^{18}\right)\)chia hết 44 => dpcm