cho A=(1/2^2-1).(1/3^2-1)....(1/100^2). So sánh A vs -1/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(\frac{1}{2^2}-1\right).\left(\frac{1}{3^2}-1\right).......\left(\frac{1}{100^2}-1\right)\)
\(A=\left(\frac{1}{2^2}-\frac{2^2}{2^2}\right).\left(\frac{1}{3^2}-\frac{3^2}{3^2}\right).....\left(\frac{1}{100^2}-\frac{100^2}{100^2}\right)\)
\(A=\left(-\frac{3}{4}\right).\left(-\frac{8}{9}\right)........\left(-\frac{9999}{10000}\right)\)
\(A=\frac{\left(-3\right).\left(-8\right).....\left(-9999\right)}{4.9...10000}=\frac{1.\left(-3\right).2.\left(-4\right)......99.\left(-101\right)}{2.2.3.3.....100.100}\)
\(A=\frac{\left(1.2.3....99\right).\left[\left(-3\right).\left(-4\right)......\left(-101\right)\right]}{\left(2.3.4....100\right).\left(2.3.4...100\right)}=\frac{1.\left(-101\right)}{100.\left(-1.\right).\left(-1\right)....\left(-1\right).2}=\frac{-101}{100.2}=\frac{-101}{200}\)
Ta thấy \(\frac{-101}{200}< \frac{-100}{200}=\frac{-1}{2}\Rightarrow A< -\frac{1}{2}\)
\(A=\frac{-3}{4}.\frac{-8}{9}......\frac{-9999}{1000}\)
\(=-\frac{1.3}{2.2}.\frac{2.4}{3.3}....\frac{99.101}{100.100}\)
\(=-\frac{1.2.3...99}{2.3...100}.\frac{3.4...101}{2.3...100}\)
\(=-\frac{1}{100}.\frac{101}{2}=-\frac{101}{200}< \frac{-100}{200}=\frac{-1}{2}\)
VẬY \(A< \frac{-1}{2}\)
Đổi: 675km = 67 500 000cm
Trên bản đồ tỉ lệ 1:2 500 000 quãng đường dài là:
67 500 000 : 2 500 000 = 27 (cm)
Đáp số: 27 cm
Xin lỗi nha
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}\)
Ta thấy \(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2015}}=1+A-\frac{1}{2^{2016}}\)
\(\Rightarrow A=1-\frac{1}{2^{2016}}< 1\)
Vậy A < 1.
\(A=\left(\frac{1}{2^2}-1\right)\times\left(\frac{1}{3^2}-1\right)\times...\times\left(\frac{1}{100^2}-1\right)\)
\(=-\left(1-\frac{1}{2^2}\right)\times\left(1-\frac{1}{3^2}\right)\times...\times\left(1-\frac{1}{100^2}\right)\)
\(=-\frac{\left(2^2-1\right)\times\left(3^2-1\right)\times...\times\left(100^2-1\right)}{2^2\times3^2\times...\times100^2}\)
\(=-\frac{\left(1\times3\right)\times\left(2\times4\right)\times...\times\left(99\times101\right)}{2^2\times3^2\times...\times100^2}\)
\(=-\frac{\left(1\times2\times...\times99\right)\times\left(3\times4\times...\times101\right)}{\left(2\times3\times...\times100\right)\times\left(2\times3\times...\times100\right)}\)
\(=-\frac{1\times101}{100\times2}=-\frac{101}{200}< -\frac{1}{2}\)