K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) - Xét tam giác MHC và tam giác MKB có :
    BM=AC ( Do M là trung điểm BC )
  Góc BMK= Góc HMC ( đối đỉnh )
    MK=MC( theo giả thiết )
=) Tam giác MHC = tam giác MKB (c.g.c)
=) Góc HKB = góc MHC=90 độ ( 2 góc tương ứng )
b) - Có KH vuông góc AC
AB vuông góc AC 
=) AB//KH ( đpcm )
=) góc MAH=góc BMA và góc BMA=góc MBK ( So le trong )
=) Góc MAH=góc MBK
- Xét tam giác MKB và tam giác MHA có
Góc MBK=góc MAH(chứng minh trên)
Góc BKM= góc MHA = 90 độ
MH=MK( theo giả thiết )
=) tam giác MKB=tam giác MHA ( cạnh góc vuông-góc nhọn) 
=)BK=AH ( 2 cạnh tương ứng )
* Có thể chứng minh theo cách đoạn chắn nữa(Nhiều cách lắm)
c) - Vì tam giác MHC= tam giác MKB ( chứng minh a )
=) BK=HC( 2 cạnh tương ứng)
Mà BK=AN ( chứng minh b0
=) HC=AN =) H là trung điểm AC 
=) MH là đường trung tuyến của tam giác MAC mà MH đồng thời là đường cao của tam giác MAC
=) Tam giác MAC cân tại M.
d) - Có M là trung điểm BC =) AM là đường trung tuyến BC mà BH cũng là đường trung tuyến AC(chứng minh trên)
và BH cắt AM ở G =) G là trọng tâm của tam giác ABC( giao 3 đường trung tuyến )
=) AG = 1/3 AM (1)
Lại xét tam giác BGC có : GB+GC > BC ( theo bất đẳng thức tam giác ) (2)
Lại có tam giác ABC vuông tại A mà AM là đường trung tuyến BC 
=) AM = 1/2 BC (theo tính chất) 
Từ (1) =) 3AG=3.1/3AM=AM = 1/2 BC
=) 3AG<BC
Mà theo (2) thì GB+GC>BC =) GB+GC>3GA =) Đpcm .
 

Sửa đề: M là trung điểm của BC

a) Sửa đề: ΔHBM=ΔKCM

Xét ΔHBM vuông tại H và ΔKCM vuông tại K có 

MB=MC(M là trung điểm của BC)

\(\widehat{B}=\widehat{C}\)(ΔABC cân tại A)

Do đó: ΔHBM=ΔKCM(cạnh huyền-góc nhọn)

9 tháng 3 2022

giúp với :vvvv

9 tháng 3 2022

a) Xét \(\Delta MBH\) vuông tại H và \(\Delta MCK\) vuông tại K:

BM = CM (M là trung điểm BC).

\(\widehat{B}=\widehat{C}\) (\(\Delta ABC\) cân tại A).

\(\Rightarrow\Delta MBH=\Delta MCK\) (cạnh huyền - góc nhọn).

c,

- Xét Δ AHM và Δ AKM có:

+ Góc AHM = góc AKM = 900 (gt)

+ AM là cạnh chung

+ Góc HAM = góc KAM (AM là phân giác)

=> ΔAHM = Δ AKM (cạnh huyền - góc nhọn)

=>AH = AK (hai cạnh tương ứng )

=> Δ AHK cân tại A (gt)

=> +) Góc AHK = (180 - góc BAC) / 2

+) Góc ACB = (180 - góc BAC) / 2

=> Góc AHK = góc ACB

mà hai góc này ở vị trí đồng vị

=> HK // BC (đpcm)

2 tháng 7 2019

A B C M N H

a) Xét tam giác ABH vuông tại H và tam giác ACH vuông tại H có:

                                     AB=AC(tam giác ABC cân tại A)

                                     AH: chung

Do đó:tam giác ABH= tam giác ACH(ch-cgv)

b)Xét tam giác BMH vuông tại M và tam giác CNH vuông tại N có:

                                     BH=CH(tam giác ABH=tam giác ACH)

                                      góc B=góc C(tam giác ABC cân tại A)

Do đó:tam giác BMH=tam giác CNH(ch-gn)

#Ở câu b bạn có thể chọn trường hợp ch-cgv cũng đc hjhj:)))<3#

c)bn cho thiếu dữ kiên nên mk k làm đc nhé tks

P/S: chúc bạn học tốt..........boaiiii>.< moa<3

                      

12 tháng 2 2018

A B C M 4cm H K

a)Ta có: tam giác ABC là tam giác cân

\(=>AB=AC\)

Mà \(AB=4cm\)

=>>AC=4cm

b) Nếu góc B=60 độ =>tgiác ABC là tam giác đèu(t/c)

c) Xét tam giác ABM và tgiác ACM có

AB=AC(cmt)

AM: chung

==>>tgiác ABM=tgiác ACM( ch-cgv)

d) Ta có: tam giác ABM=tgiác ACM(cmt)

=>\(\widehat{AMC}=\widehat{AMB}\)(2 góc tương ứng)

Mà: \(\widehat{AMC+}\widehat{AMC}=180^0\)

\(=>\widehat{AMC=}\widehat{AMB}=\frac{180^0}{2}=90^0\)

=> AMvuông góc vs BC

e) Xét tgiác BMH và tgiác CMK có :

BM=CM( 2 cạnh  tương ứng , cmt(a))

\(\widehat{B}=\widehat{C}\)( tgiác ABC là tgiác đều)

==>>>tgiác BMH=tgiác CMK(ch-gn)

=>MH=MK( 2 cạnh tương ứng)


 

16 tháng 12 2023

a: Xét tứ giác AHMK có

\(\widehat{AHM}=\widehat{AKM}=\widehat{HAK}=90^0\)

=>AHMK là hình chữ nhật

=>AM=HK

b: Xét ΔABC có

M là trung điểm của BC

MK//AB

Do đó: K là trung điểm của AC

Xét ΔABC có

M là trung điểm của BC

MH//AC

Do đó: H là trung điểm của AB

Xét ΔABC có

M,K lần lượt là trung điểm của CB,CA

=>MK là đường trung bình của ΔABC

=>MK//AB và \(MK=\dfrac{AB}{2}\)

Ta có: MK//AB

H\(\in\)AB

Do đó: MK//HB

Ta có: \(MK=\dfrac{AB}{2}\)

\(AH=HB=\dfrac{AB}{2}\)

Do đó: MK=AH=HB

Xét tứ giác BHKM có

BH//KM

BH=KM

Do đó: BHKM là hình bình hành

c: Gọi O là giao điểm của AM và KH

Ta có: AHMK là hình chữ nhật

=>AM cắt KH tại trung điểm của mỗi đường

=>O là trung điểm của AM và KH

=>\(OA=OM=\dfrac{AM}{2};OK=OH=\dfrac{KH}{2}\)

mà AM=KH

nên OA=OM=OK=OH(1)

Xét ΔAKM có

AF,KO là các đường trung tuyến

AF cắt KO tại D

Do đó: D là trọng tâm của ΔAKM

Xét ΔAKM có

D là trọng tâm

KO là đường trung tuyến

Do đó: \(KD=\dfrac{2}{3}KO\left(2\right)\)

Xét ΔHAM có

AE,HO là các đường trung tuyến

AE cắt HO tại I

Do đó: I là trọng tâm của ΔHAM

Xét ΔHAM có

HO là đường trung tuyến

I là trọng tâm

Do đó: \(HI=\dfrac{2}{3}HO\left(3\right)\)

Từ (1),(2),(3) suy ra HI=KD

loading...

a: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM vừa là đường cao vừa là đường phân giác

Xét ΔAHM vuông tại H và ΔAKM vuông tại K có

AM chung

\(\widehat{HAM}=\widehat{KAM}\)

Do đó: ΔAHM=ΔAKM

Suy ra: MH=MK

b: Ta có: ΔAHK cân tại A

mà AM là đường phân giác

nên AM là đường trung trực của HK