K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2016

\(A=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\)

\(\Rightarrow2A=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}...+\frac{2}{99.101}\)

\(\Rightarrow2A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\)

\(\Rightarrow2A=\frac{1}{3}-\frac{1}{101}\)

\(\Rightarrow2A=\frac{101}{303}-\frac{3}{303}\)

\(\Rightarrow2A=\frac{98}{303}\)

\(\Rightarrow A=\frac{98}{303}:2=\frac{98}{303.2}=\frac{98}{606}=\frac{49}{303}\)

lên 820 điểm hỏi đáp nha

17 tháng 4 2016

\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\) 

\(=\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right)\) 

=\(\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{101}\right)\)

\(=\frac{1}{2}.\frac{98}{303}\)

\(=\frac{49}{303}\)

17 tháng 4 2016

\(=\frac{1}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{99.101}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.......+\frac{1}{99}-\frac{1}{101}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{101}\right)\)

\(=\frac{1}{2}.\frac{98}{101}=\frac{49}{101}\)

22 tháng 7 2021

Đặt A=\(\dfrac{2}{3.5}.\dfrac{2}{7.9}.....\dfrac{2}{99.101}\)

A=\(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\)

A=\(\dfrac{1}{3}-\dfrac{1}{101}=\dfrac{98}{303}\)

Ta có: \(P=\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+\dfrac{2}{7\cdot9}+\dfrac{2}{9\cdot11}+\dfrac{2}{11\cdot13}+\dfrac{2}{13\cdot15}\)

\(=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{13}-\dfrac{1}{15}\)

\(=\dfrac{1}{3}-\dfrac{1}{15}\)

\(=\dfrac{4}{15}\)

19 tháng 1 2018

\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\)

\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{101}\right)\)

\(=\frac{1}{2}.\frac{98}{303}\)

\(=\frac{49}{303}\)

26 tháng 7 2016

\(\text{Ta có:}\) \(\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\right).x=\frac{2}{3}\)

\(\Leftrightarrow2.\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\right).x=\frac{2}{3}.2\)

\(\Leftrightarrow\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\right).x=\frac{4}{3}\)

\(\Leftrightarrow\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{9}-\frac{1}{11}\right).x=\frac{4}{3}\)

\(\Leftrightarrow\left(1-\frac{1}{11}\right)x=\frac{4}{3}\)

\(\Leftrightarrow\frac{10}{11}x=\frac{4}{3}\)

\(\Leftrightarrow x=\frac{4}{3}:\frac{10}{11}=\frac{22}{15}\)

1 tháng 5 2018

\(\frac{1}{1x3}\)\(\frac{1}{3x5}\)+....+\(\frac{1}{9x11}\))                                    x \(y\) = \(\frac{2}{3}\)

\(\frac{2}{1x3}\)\(\frac{2}{3x5}\)+...+\(\frac{2}{9x11}\))                                      x \(y\)\(\frac{4}{3}\)               (nhân 2 vế lên với 2)

(1 - \(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{5}\)+\(\frac{1}{5}\)- ...+ \(\frac{1}{9}\)\(\frac{1}{11}\))         x     \(y\)\(\frac{4}{3}\)

( 1 - \(\frac{1}{11}\))                                                                        x    \(y\)=\(\frac{4}{3}\)

\(\frac{10}{11}\)                  x            \(y\)                                                       =\(\frac{4}{3}\)

                                              \(y\)                                                      = \(\frac{4}{3}\)\(\frac{10}{11}\)

                                              \(y\)                                                       = \(\frac{4}{3}\)\(\frac{11}{10}\)

                                               \(y\)                                                       =\(\frac{22}{15}\)

1 tháng 5 2018

kết quả đúng nhưng mình ko hiểu bạn có thể giáng lại ko ?

\(B=-\dfrac{1}{2}\cdot\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{99\cdot101}\right)\)

\(=\dfrac{-1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)

\(=\dfrac{-1}{2}\cdot\dfrac{100}{101}=-\dfrac{50}{101}\)

\(\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+...+\dfrac{1}{203.205}\) 

\(=\dfrac{1}{2}.\left(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{203.205}\right)\) 

\(=\dfrac{1}{2}.\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{203}-\dfrac{1}{205}\right)\) 

\(=\dfrac{1}{2}.\left(\dfrac{1}{3}-\dfrac{1}{205}\right)\) 

\(=\dfrac{1}{2}.\dfrac{202}{615}\) 

\(=\dfrac{101}{615}\) 

Chúc bạn học tốt!

DD
31 tháng 1 2021

\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+\frac{1}{11.13}\)

\(=\frac{1}{2}\left(\frac{5-3}{3.5}+\frac{7-5}{5.7}+\frac{9-7}{7.9}+\frac{11-9}{9.11}+\frac{13-11}{11.13}\right)\)

\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)\)

\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{13}\right)=\frac{5}{39}\)