Giúp em làm câu 21 đi ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
21.
Giới hạn đã cho hữu hạn khi và chỉ khi \(a=1\)
Khi đó:
\(\lim\limits_{x\rightarrow+\infty}\left(x-\sqrt{x^2+bx+2}\right)=\lim\limits_{x\rightarrow+\infty}\dfrac{x^2-\left(x^2+bx+2\right)}{x+\sqrt{x^2+bx+2}}=\lim\limits_{x\rightarrow+\infty}\dfrac{-bx-2}{x+\sqrt{x^2+bx+2}}\)
\(=\lim\limits_{x\rightarrow+\infty}\dfrac{-b-\dfrac{2}{x}}{1+\sqrt{1+\dfrac{b}{x}+\dfrac{2}{x^2}}}=\dfrac{-b}{2}\)
\(\Rightarrow-\dfrac{b}{2}=4\Rightarrow b=-8\)
\(\Rightarrow a+b=1-8=-7\)
22.
B sai, do các cạnh bên của chóp đều tạo với đáy các góc bằng nhau
21 paid (loại 2)
22 will be (loại 1)
23 wouldn't have conquered (loại 3)
24 believed (loại 2)
25 would you choose (loại 2)
26 had scored (loại 3)
27 would certainlu accept ( loại 2)
28 had received (loại 3)
29 leave - calls (loại 0)
30 had (loại 2)
31 didn't drink (loại 2)
32 had turned on (loại 3)
33 had had (loại 3)
34 would have spoke (loại 3)
35 sends (loại 1)
36 wouldn't do (loại 2)
37 hadn't heard (loại 3)
Đường kính khối cầu cuối cùng : 100cm
Chiều cao tối đa mô hình đạt được:
\(S=\dfrac{u_1}{1-q}=\dfrac{100}{1-\dfrac{1}{2}}=200\left(cm\right)\)
\(\lim\dfrac{3.2^{n+1}-2.3^n}{4+3^n}=\lim\dfrac{6.\left(\dfrac{2}{3}\right)^n-2}{4.\left(\dfrac{1}{3}\right)^n+1}=\dfrac{0-2}{0+1}=-2\)
\(n_{Br_2}=\dfrac{8}{160}=0,05\left(mol\right)\\ C_2H_4+Br_2\rightarrow C_2H_4Br_2\\ n_{C_2H_4}=n_{Br_2}=0,05\left(mol\right)\\ \Rightarrow V_{C_2H_4\left(đktc\right)}=0,05.22,4=1,12\left(l\right)\\ \%V_{\dfrac{C_2H_4}{hh}}=\dfrac{1,12}{3,36}.100\approx33,33\%\\ \Rightarrow\%V_{\dfrac{CH_4}{hh}}=\dfrac{3,36-1,12}{3,36}.100\approx66,67\%\)
a: \(=4x^2-x^4+8-2x^2=-x^4+2x^2+8\)
b: \(=\dfrac{x^2+x}{x+1}=x\)
7.
\(\lim\left(3.4^n-5^n\right)=\lim5^n\left(3.\left(\dfrac{4}{5}\right)^n-1\right)=+\infty.\left(-1\right)=-\infty\)
8.
\(\lim\dfrac{n^2+n-1}{3n+2}=\lim\dfrac{n^2\left(1+\dfrac{1}{n}-\dfrac{1}{n^2}\right)}{n\left(3+\dfrac{2}{n}\right)}=\lim\dfrac{n\left(1+\dfrac{1}{n}-\dfrac{1}{n^2}\right)}{3+\dfrac{2}{n}}=\dfrac{+\infty}{3}=+\infty\)
Gọi công thức chung của 2 anken là CnH2n
\(n_{C_nH_{2n}}=\dfrac{3,36}{22,4}=0,15\left(mol\right)\)
\(m_{C_nH_{2n}}=m_{tăng}=7,7\left(g\right)\)
=> \(M_{C_nH_{2n}}=14n=\dfrac{7,7}{0,15}\)
=> n = 3,67
Mà 2 anken kế tiếp nhau
=> 2 anken là C3H6 và C4H8
\(hhA:C_nH_{2n}\\ n_{hh}=\dfrac{3,36}{22,4}=0,15\left(mol\right)\\ C_nH_{2n}+Br_2\rightarrow\left(trong.CCl_4\right)C_nH_{2n}Br_2\\ m_{ddtăng}=m_A=7,7\left(g\right)\\ \Rightarrow M_A=\dfrac{7,7}{0,15}\approx51,333\)
Đặt 2 anken là:
\(C_aH_{2a},C_bH_{2b}\left(a,b:nguyên,dương\right)\\ \Rightarrow14a< 51,333< 14b\\ \Leftrightarrow a< 3,67< b\)
=> 2 anken: C3H6, C4H8
Em xem có gì không hiểu hỏi lại nha