K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2021

\(E=\frac{1}{x}+\frac{1}{y}+\frac{2}{x+y}\)

\(=\frac{x+y}{xy}+\frac{2}{x+y}=\frac{x+y}{xy}+\frac{1}{x+y}+\frac{1}{x+y}\)

AM - GM cho 2 số luôn dương \(\ge\sqrt{\frac{1}{xy}}+\frac{1}{x+y}=1+\frac{1}{x+y}\ge1\)

Dấy ''='' xảy ra <=> \(x=y=\frac{1}{2}\)

15 tháng 3 2021

んuリ イ cái gì vậy Tú :))

\(E=\frac{1}{x}+\frac{1}{y}+\frac{2}{x+y}=\frac{x+y}{xy}+\frac{2}{x+y}\)

\(=x+y+\frac{2}{x+y}=\frac{x+y}{2}+\frac{2}{x+y}+\frac{x+y}{2}\)

Áp dụng bất đẳng thức AM-GM ta có :

\(\frac{2}{x+y}+\frac{x+y}{2}\ge2\sqrt{\frac{2}{x+y}\cdot\frac{x+y}{2}}=2\)(1)

\(x+y\ge2\sqrt{xy}=2\)( xy = 1 ) => \(\frac{x+y}{2}\ge1\)(2)

Cộng (1) và (2) theo vế => MinE = 3

Đẳng thức xảy ra <=> x = y = 1

27 tháng 6 2016

bài 2 nhân p vs x+y+xy rồi t định áp dụng bđt (x+y+z)(1/x+1/y+1/z)>=9 nhưng vướng

28 tháng 6 2016

bài 1 sai đề

28 tháng 6 2016

3. 

P=(x+y)(x^2-xy+y^2)+xy

P=x^2+y^2-xy+xy

P=x^2+y^2

NV
27 tháng 12 2020

\(\dfrac{\left(x+y+1\right)^2}{xy+x+y}\ge\dfrac{3\left(xy+x+y\right)}{xy+x+y}=3\)

\(\Rightarrow A=\dfrac{8\left(x+y+1\right)^2}{9\left(xy+x+y\right)}+\dfrac{\left(x+y+1\right)^2}{9\left(xy+x+y\right)}+\dfrac{xy+x+y}{\left(x+y+1\right)^2}\)

\(A\ge\dfrac{8}{9}.3+2\sqrt{\dfrac{\left(x+y+1\right)^2\left(xy+x+y\right)}{\left(xy+x+y\right)\left(x+y+1\right)^2}}=\dfrac{10}{3}\)

Dấu "=" xảy ra khi \(x=y=1\)

28 tháng 12 2020

mk nghĩ nên đăt =t (t>=3). cho dễ làm

6 tháng 5 2017

áp dụng BĐT\(\frac{1}{x}+\frac{1}{y}>=\frac{4}{x+y}\)(x,y>0)

=>A=\(\frac{1}{xy}+\frac{2}{x^2+y^2}=\frac{2}{2xy}+\frac{2}{x^2+y^2}=2\left(\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)>=\frac{2.4}{2xy+X^2+Y^2}=\frac{8}{\left(x+y\right)^2}=8\)

dấu bằng xảy ra khi x=y=1/2

5 tháng 8 2016

1. \(1=x^2+y^2\ge2xy\Rightarrow xy\le\frac{1}{2}\)

 \(A=-2+\frac{2}{1+xy}\ge-2+\frac{2}{1+\frac{1}{2}}=-\frac{2}{3}\)

max A = -2/3 khi x=y=\(\frac{\sqrt{2}}{2}\)

5 tháng 8 2016

\(\frac{1}{xy}+\frac{1}{xz}=\frac{1}{x}\left(\frac{1}{y}+\frac{1}{z}\right)\ge\frac{1}{x}.\frac{4}{y+z}=\frac{4}{\left(4-t\right)t}=\frac{4}{4-\left(t-2\right)^2}\ge1\) với t = y+z => x =4 -t