5/6 -3/4 =
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: =1/8*9/4=9/32
2: =8/27*243/32=9/4
3: =(5/4*4/5)^5*(4/5)^2=16/25
4: \(=\left(-\dfrac{5}{6}\cdot\dfrac{6}{5}\right)^2\cdot\left(\dfrac{6}{5}\right)^2=\dfrac{36}{25}\)
5: \(=\left(-\dfrac{4}{3}\right)^3\cdot\left(\dfrac{3}{4}\right)^{10}=\left(-1\right)\left(\dfrac{3}{4}\right)^7=-\left(\dfrac{3}{4}\right)^7\)
6: \(=\left(\dfrac{1}{3}\cdot\dfrac{-9}{2}\right)^4\left(-\dfrac{9}{2}\right)^2=\left(-\dfrac{3}{2}\right)^4\cdot\dfrac{81}{4}=\dfrac{9}{4}\cdot\dfrac{81}{4}=\dfrac{729}{16}\)
8: =(0,2*5)^4*5^2=25
10: =-0,5^5*2^10
=-0,5^5*2^5*2^5
=-32
13: =(0,5*2)^2*2^2=4
Sửa đề: 3^5+3^5+3^5; 2^x
=>\(2^x=\dfrac{4^5\cdot4}{3^5\cdot3}\cdot\dfrac{6^5\cdot6}{2^5\cdot2}\)
=>\(2^x=\left(\dfrac{4}{3}\right)^6\cdot\left(\dfrac{6}{2}\right)^6=4^6=2^{12}\)
=>x=12
Lời giải chi tiết:
3 + 4 – 5 = 2 | 8 – 6 + 3 = 5 | 10 – 3 – 2 = 5 |
5 + 1 + 2 = 8 | 4 + 4 – 6 = 2 | 5 + 5 – 7 = 3 |
6 – 4 + 8 = 10 | 9 – 6 + 5 = 8 | 4 + 3 – 3 = 4 |
\(9+2+5+3+7+8+4+2+9+6+4+65+6+7+4+6+3+7+4+8+5+9+08+87+1+2+3+4+2+3+2+5+6+767+5+75+6+4+6+5+66+5+7+546+46+43+6+3+6+4+6+7+8878+68+68+6+7+9+9=10961\)
\(\dfrac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}.\dfrac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}=2^n\)
\(\Rightarrow\dfrac{4^5.4}{3^5.3}.\dfrac{6^5.6}{2^5.2}=2^n\)
\(\Rightarrow\dfrac{4^5.4.6^5.6}{3^5.3.2^5.2}=2^n\)
\(\Rightarrow\dfrac{\left(2.2\right)^5.2.2.\left(3.2\right)^5.3.2}{3^5.3.2^5.2}=2^n\)
\(\Rightarrow\dfrac{2^5.2^5.2.2.3^5.2^5.3.2}{3^5.3.2^5.2}=2^n\)
Rút gọn vế trái ta có :
\(2^5.2.2.^5=2^n\)
\(\Rightarrow2^{12}=2^n\)
\(\Rightarrow n=12\) ( Thỏa mãn điều kiện \(n\in N\) )
Vậy n =12
=>\(\dfrac{4^5\left(1+1+1+1\right)}{3^5\left(1+1+1\right)}.\dfrac{6^5\left(1+1+1+1+1+1\right)}{2^5\left(1+1\right)}=2^n\)
=>\(\dfrac{4^5.4}{3^5.3}.\dfrac{6^5.6}{2^5.2}=2^n\) =>\(\dfrac{4^6}{3^6}.\dfrac{6^6}{2^6}=2^n\)
=>\(\left(\dfrac{4.6}{3.2}\right)^6=2^n\) =>\(4^6=2^n\) =>\(2^{12}=2^n\) =>n=12.
\(\frac{5}{6}-\frac{3}{4}\)
= \(\frac{20}{24}-\frac{18}{24}\)
= \(\frac{2}{24}\)chưa tối giản
= \(\frac{1}{12}\)
HT
456
gnkmbtjgvcfb