Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có 10 ! có tận cùng là 0 nên 10! chia hết cho 2
ta có 1 x 3 x 5 x 7 x 9 luôn có tận cùng là 5 vì 5 x vs số lẻ có tận cùng là 5
nên 5 + 9 = 14 chia hết cho 2
nên 1.3.5...9 + 2009 chia hết cho 2
vậy 10! + 1.3.5...9 + 2009 chia hết cho 2
hay a chia hết cho 2
a= (x+2009)(x+2010)
Vì x là stn chia hết cho 2
---> x+2009 là stn lẻ, còn x+2010 là stn chẵn.
Mà LẺ × CHẴN = CHẴN --> (x+2009)(x+2010) chia hết cho 2.
(ab) + (ba) với ab và ba là 2stn
( Mình ko ghi dấu gạch trên đầu vì nó rách việc quá mà mình sẽ ghi A và B nên mong bạn thông cảm)
Ta có:(AB) + (BA) = (10A+B) + (10B+A)
= (10A+A) + (10B+B)
= 11A + 11B
Chúng chia hết cho 11 --->(AB) +(BA) chia hết cho 11
có x+2009 và x+2010 là 2 số liên tiếp => 1 số là chẵn và một số là lẻ
mà 1 số chẵn nhân với 1 số lẻ luôn ra một số chẵn (cái này không cần phải chứng minh)
=> a luôn chia hết cho 2
Nhìn cái đề đã thấy người ra đề vui tính. \(a+b+c=2009\)
1 trong a;b;c là 2009 nghĩa là 2 số bằng 0
\(\dfrac{1}{a};\dfrac{1}{b};\dfrac{1}{c}\) hoán vị của \(\dfrac{1}{0};\dfrac{1}{0};\dfrac{1}{2009}\)
và \(\dfrac{1}{0}=?\)
Bạn bị nhầm rồi. Chẳng hạn:
1+(-1)+2009=2009
\(\dfrac{1}{1}+\dfrac{1}{-1}+\dfrac{1}{2009}=\dfrac{1}{2009}\)
\(\frac{a}{2b+a}+\frac{b}{2c+b}+\frac{c}{2a+c}=\frac{a^2}{2ab+a^2}+\frac{b^2}{2bc+b^2}+\frac{c^2}{2ca+c^2}\)
\(\ge\frac{\left(a+b+c\right)^2}{2ab+a^2+2bc+b^2+2ca+c^2}=\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Áp dụng BĐT Cauchy với a ; b ; c dương , ta có :
\(\dfrac{a}{2b+a}+\dfrac{b}{2c+b}+\dfrac{c}{2a+b}=\dfrac{a^2}{2ab+a^2}+\dfrac{b^2}{2bc+b^2}+\dfrac{c^2}{2ac+bc}\ge\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2ab+2bc+2ac}=\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c=1\)
Vậy ...
Bài 1:
Ta có: \(a+b\ge2\sqrt{ab}\)
\(b+c\ge2\sqrt{bc}\)
\(a+c\ge2\sqrt{ac}\)
Do đó: \(2\left(a+b+c\right)\ge2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\)
hay \(a+b+c\ge\sqrt{ab}+\sqrt{cb}+\sqrt{ac}\)