Với điều kiện: \(x>0;x\ne4;x\ne1\): Cho \(P=\sqrt{x}-1\). Tìm m để có x thoả mãn \(P=mx\sqrt{x}-2mx+1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
T có hệ điều kiện:
\(\hept{\begin{cases}\left(x-1\right)\left(x+1\right)\ge0\left(1\right)\\\left(x-1\right)\left(9-x\right)\ge0\left(2\right)\\\left(x-1\right)\left(2x-12\right)\ge0\left(3\right)\end{cases}}\)
Sử dụng xét dấu trong trái ngoài cùng, ta có:
\(\left(1\right)\Leftrightarrow x\le-1\) hoặc \(x\ge1\)
\(\left(2\right)\Leftrightarrow1\le x\le9\)
\(\left(3\right)\Leftrightarrow x\le1\) hoặc \(x\ge6\)
Biểu diễn nghiệm trên trục như sau:
(1): 1 -1 ] [
(2): 1 ] [ [ 9
(3): ] 1 6 ] [
Kết hợp cả ba ta có:
-1 1 ] [ ] 9 [ 6 ]
Vậy điều kiện cuối là \(6\le x\le9\)
Cô giải chi tiết đó :)) Chúc em học tốt :)
Áp dụng bđt \(\left(a+b\right)^2\ge4ab\) , ta có :
\(16=\left(2x+xy\right)^2\ge4.2x.xy\Leftrightarrow8x^2y\le16\Leftrightarrow x^2y\le2\)
A đạt giá trị lớn nhất bằng 2 khi x = 1, y = 2
Ta có:
2x+xy=4
=> xy=4-2x
A=x2y=x.(xy)
=> A=x(4-2x)=4x-2x2
=> A=2-2+4x-2x2 = 2-2(x2-2x+1)
=> A=2-2(x-1)2
Ta thấy: (x-1)2\(\ge\)0 với mọi x
=> A \(\le\)2 với mọi x
=> Giá trị lớn nhất của A là 2
Đạt được khi x-1=0 hay x=1 và y=2
a) Khi \(x>0\)thì hàm số đã cho đồng biến \(\Leftrightarrow3m-2>0\)
\(\Leftrightarrow3m>2\)\(\Leftrightarrow m>\frac{2}{3}\)
b) Khi \(x>0\)thì hàm số đã cho nghịch biến \(\Leftrightarrow3m-2< 0\)
\(\Leftrightarrow3m< 2\)\(\Leftrightarrow m< \frac{2}{3}\)
(-12).x > 0
=> -12 và x cùng dấu
mà -12 mang dấu "-"
=> x cũng mang dấu "-"
=> x thuộc {-1;-2;-3;....}
\(\sqrt{x}-1=mx\sqrt{x}-2mx+1\)
\(\Leftrightarrow mx\left(\sqrt{x}-2\right)-\left(\sqrt{x}-2\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)\left(mx-1\right)=0\)
\(\Leftrightarrow mx-1=0\) (do \(x\ne4\Rightarrow\sqrt{x}-2\ne0\))
Để có x thỏa mãn bài toán
\(\Rightarrow\left\{{}\begin{matrix}m\ne0\\\dfrac{1}{m}\ne1\\\dfrac{1}{m}>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>0\\m\ne1\end{matrix}\right.\)