chứng minh: x3-x chia hết cho 24 biết x là 1 sô lẻ. chia hết cho 24 với mọi giá trị của x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tham khảo
Vì P ( x ) = ax2ax2 + bx + c chia hết cho 5 với mọi giá trị nguyên của x nên :
P ( 0 ) ; P ( 1 ) ; P ( - 1 ) tất cả đều chia đều cho 5 .
Ta có :
P ( 0 ) chia hết cho 5
⇒ a . 02+ b . 0 + c chia hết cho 5
⇒ c chia hết cho 5
P ( 1 ) chia hết cho 5
⇒ a . 12 + b . 1 + c chia hết cho 5
⇒ a + b + c chia hết cho 5
Vì c chia hết cho 5 ⇒ a + b chia hết cho 5 ( 1 )
P ( - 1 ) chia hết cho 5
⇒ a . (−1)2(−1)2 + b . ( - 1 ) + c chia hết cho 5
⇒ a + b + c chia hết cho 5
Từ ( 1 ) ; ( 2 ) ⇒ a + b + a - b chia hết cho 5
⇒ 2a chia hết cho 5
Mà ƯCLN ( 2 ; 3 ) = 1 ⇒ a chia hết cho 5
Vì a + b chia hết cho 5 ; a chia hết cho 5 ⇒ b chia hết cho 5
Vậy a , b , c chia hết cho 5 . ( đpcm )
a/ \(x^4+2x^3+x^2+x^2+2xy+y^2=0\)
\(\Leftrightarrow\left(x^2+x\right)^2+\left(x+y\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+x=0\\x+y=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\\\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\end{matrix}\right.\)
b/ 72 chia hết 24 nên ta chỉ cần chứng minh \(A=n^3+23n⋮24\)
\(A=n^3+23n=n\left(n^2+23\right)=n\left[n^2-1+24\right]\)
\(=n\left[\left(n-1\right)\left(n+1\right)+24\right]=n\left(n-1\right)\left(n+1\right)+24n\)
\(24n\) hiển nhiên chia hết 24. Xét \(B=n\left(n-1\right)\left(n+1\right)\)
B là tích 3 số nguyên liên tiếp \(\Rightarrow B⋮3\)
n lẻ \(\Rightarrow n=2k+1\Rightarrow B=\left(2k+1\right)2k.\left(2k+2\right)\)
\(B=4k\left(k+1\right)\left(2k+1\right)\)
\(k\left(k+1\right)\) là tích 2 số nguyên liên tiếp \(\Rightarrow\) chia hết cho 2 \(\Rightarrow B⋮8\)
Mà 3;8 nguyên tố cùng nhau \(\Rightarrow B⋮24\Rightarrow A⋮24\)
Vì 18 chia hết cho x;24 chia hết cho x
=>x thuộc ƯC(18;24)
Ta có: 18=2.3^2 24=2^3.3
ƯC(18;24)=2.3=6
=>x=6
xét F(-1)=a-b+c\(⋮\)3 (1); xétF(1)=a+b+c\(⋮\)3(2) từ (1) và (2) suy ra a-b+c+a+b+c\(⋮\)3 suy ra 2(a+c)\(⋮\)3 suy ra a+c\(⋮\)3 (3)
xétF(0)=c\(⋮\)3 suy ra a\(⋮\)3 (4) từ (3) và (4) suy ra F(x)=bx\(⋮3\forall\)x nên b\(⋮\)3
242+1=(24+1)(24-1)
25.23
25chia het cho 25
suy ra 25.23 chia hetcho 25
x3-x=x*(x^2-1) = x*(x-1)*(x+1)
vì x-1,x,x+1 là 3 số nguyên liên tiếp nên tích của chúng chia hết cho 3
mà x lẻ nên x-1 và x+1 là 2 số chẵn, tích của chúng chia hết cho 8
vì ƯCLN(3,8) =1
do đó x^3 - x chia hết cho 24