K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2020

a) \(S_{ABCD}=AB.AD=20,4.18,5=377,4cm^2\)

b) Mình xin sửa lại giao điểm của MN và DC là E nha--> giờ ta tính CE

Xét 2 tam giác MNB và tam giác ENC có:

\(\widehat{MBN}=\widehat{ECN}=90^0\)

\(NB=NC\)(Vì N trung điểm BC)

\(\widehat{MNB}=\widehat{ENC}\)(2 góc đối đỉnh)

\(\Rightarrow\Delta MNB=\Delta ENC\left(g.c.g\right)\Rightarrow CE=BM=\frac{1}{2}AB=\frac{20,4}{2}=10,2cm\)

14 tháng 2 2022

Theo đề bài ABCD là hình chữ nhật.

\(\Rightarrow DC=AB=12\left(cm\right).\)

\(S_{\Delta MDN}=\dfrac{1}{2}\times DN\times BC.\\ =\dfrac{1}{2}\times\dfrac{2}{3}DC\times BC.\\ \Rightarrow S_{\Delta MDN}=\dfrac{1}{2}\times\dfrac{2}{3}\times12\times6=24\left(cm^2\right).\)

8 tháng 6 2018

S(ABCD)=600.S(NBC)=S(ABM)=150.S(ABC)=300..S(ANC)=S(AMC)=1/4S(ABCD).

Gọi MH và NI lần lượt là chiều cao của tam giác ANC và AMC.

MH=NI( dt ANC=AMC và chung đáy AC).

S(MFC)=S(NFC)(chung đáy FC và chiều cao MH=NI).

S(MFC)=S(MFB) (chung  chiều cao hạ từ Fxuống BC và đáy MC=MB)

suy ra S(FMC)=1/3S(NBC)=1/3× 150

=50.S(AFM)

=S(ABC)-S(FMC)-S(ABM)

=300-50-150=100 

S(BMN)=1/4S(ABN)

Gọi MK và AG lần lượt là chiều cao của tam giác BMN và ABN.

Suy ra: MK=1/4AG(▲ BMN=1/4▲ABN và chung đáy NB).

S(MEF)=1/4S(AEF)(chung đáy EF và chiều cao MK=1/4AG) hay S(AEF)=4/5×S(AMF)=4/5×100=80

17 tháng 1 2017

S(ABCD)=600.S(NBC)=S(ABM)=150.S(ABC)=300..S(ANC)=S(AMC)=1/4S(ABCD). Gọi MH và NI lần lượt là chiều cao của tam giác ANC và AMC. MH=NI( dt ANC=AMC và chung đáy AC). S(MFC)=S(NFC)(chung đáy FC và chiều cao MH=NI). S(MFC)=S(MFB) (chung  chiều cao hạ từ Fxuống BC và đáy MC=MB) suy ra S(FMC)=1/3S(NBC)=1/3× 150 =50.S(AFM) =S(ABC)-S(FMC)-S(ABM) =300-50-150=100 S(BMN)=1/4S(ABN) Gọi MK và AG lần lượt là chiều cao của tam giác BMN và ABN. Suy ra: MK=1/4AG( tam giác BMN=1/4tam giác ABN và chung đáy NB). S(MEF)=1/4S(AEF)(chung đáy EF và chiều cao MK=1/4AG) hay S(AEF)=4/5×S(AMF)=4/5×100=80