1, giải hệ phương trình đã cho \(\left\{{}\begin{matrix}2x\left(x+1\right)\left(y+1\right)+xy=-6\\2y\left(y+1\right)\left(x+1\right)+yx=6\end{matrix}\right.\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cộng vế với vế:
\(\left(x+y\right)\left(x+1\right)\left(y+1\right)+xy=0\)
\(\Leftrightarrow\left(x+y\right)\left(x+y+xy+1\right)+xy=0\)
Đặt \(\left\{{}\begin{matrix}x+y=a\\xy=b\end{matrix}\right.\) với \(a^2\ge4b\)
\(\Rightarrow a\left(a+b+1\right)+b=0\)
\(\Leftrightarrow a\left(a+b\right)+a+b=0\)
\(\Leftrightarrow\left(a+1\right)\left(a+b\right)=0\Rightarrow\left[{}\begin{matrix}a=-1\\a+b=0\end{matrix}\right.\)
Th1: \(a=-1\Rightarrow y=-x-1\Rightarrow y+1=-x\)
Thay vào pt đầu:
\(2x\left(x+1\right).\left(-x\right)+x\left(-x-1\right)=-6\)
Bạn tự bấm máy
TH2: \(a+b=0\Rightarrow x+y+xy=0\)
\(\Leftrightarrow\left(x+1\right)\left(y+1\right)=1\)
Thay vào pt đầu: \(\left\{{}\begin{matrix}x+y+xy=0\\2x+xy=-6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x+y+xy=0\\x-y=-6\end{matrix}\right.\)
\(\Rightarrow y-6+y+y\left(y-6\right)=0\)
\(\left\{{}\begin{matrix}6\left(x+y\right)=8+2x-3y\\5\left(y-x\right)=5+3x+2y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x+6y=8+2x-3y\\5y-5x=5+3x+2y\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}6x-2x+6y+3y=8\\-5x-3x+5y-2y=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}4x+9y=8\\-8x+3y=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}4x+9y=8\\-24x+9y=15\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}28x=-7\\4x+9y=8\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{7}{28}=-\dfrac{1}{4}\\4.\left(-\dfrac{1}{4}\right)+9y=8\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{4}\\y=1\end{matrix}\right.\\ Vậy:\left(x;y\right)=\left(-\dfrac{1}{4};1\right)\)
⇌ 2x(x+1)(y+1)+xy= -2y(y+1)(x+1)-xy
⇌ 2x(x+1)(y+1)+ 2y(y+1)(x+1)+xy+xy=0
⇌ (x+1)(y+1)(2x+2y)+2xy=0
⇌ 2(x+1)(y+1)(x+y)+2xy=0
⇌ 2((x+1)(y+1)(x+y)+xy)=0
⇌ x2y+x2+xy+x+xy2+xy+y2+y+xy=0
mk đc đến đó thui
thông cảm nha
mk dùng cách đặt ẩn phụ: x+y=a; xy=b => (a+b)(a+1)=0 mà chưa ra đc gì nữa. nản
\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x^2-2x\right)-\left(y^2-4y\right)=1\\\left(x^2-2x\right)^2+2=y\left(x-2\right)x\left(y-4\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x^2-2x\right)-\left(y^2-4y\right)=1\\\left(x^2-2x\right)^2+2=\left(x^2-2x\right)\left(y^2-4y\right)\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x^2-2x=u\\y^2-4y=v\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2u-v=1\\u^2+2=uv\end{matrix}\right.\) \(\Rightarrow u^2+2=u\left(2u-1\right)\)
\(\Leftrightarrow u^2-u-2=0\Leftrightarrow...\)
b/
\(\Leftrightarrow\left\{{}\begin{matrix}x^2=4-y^2\\2x^3=\left(x+y\right)\left(4-xy\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2=4\\2x^3=\left(x+y\right)\left(4-xy\right)\end{matrix}\right.\)
\(\Rightarrow2x^3=\left(x+y\right)\left(x^2+y^2-xy\right)\)
\(\Leftrightarrow2x^3=x^3+y^3\)
\(\Leftrightarrow x^3=y^3\Rightarrow x=y\)
Thay vào pt đầu:
\(2x^2=4\Rightarrow x^2=2\Rightarrow x=y=\pm\sqrt{2}\)
a/
\(\Leftrightarrow\left\{{}\begin{matrix}x^2\left(2x+y\right)+x\left(2x+y\right)=-6\\x^2+x+2x+y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x^2+x\right)\left(2x+y\right)=-6\\x^2+x+2x+y=1\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x^2+x=a\\2x+y=b\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}ab=-6\\a+b=1\end{matrix}\right.\) với
Theo Viet đảo, a và b là nghiệm của:
\(t^2-t-6=0\Rightarrow\left[{}\begin{matrix}t=3\\t=-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2+x=3\\2x+y=-2\end{matrix}\right.\\\left\{{}\begin{matrix}x^2+x=-2\left(vn\right)\\2x+y=3\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+x-3=0\\y=-2x-2\end{matrix}\right.\) (bấm casio)
Hệ pt \(\Leftrightarrow\left\{{}\begin{matrix}2x\left(x+1\right)\left(y+1\right)+xy=-6\left(1\right)\\2y\left(y+1\right)\left(x+1\right)\text{yx}=6\left(2\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x\left(x+1\right)\left(y+1\right)=-6-xy\\2y\left(y+1\right)\left(x+1\right)=6-xy\end{matrix}\right.\)
Thay x=0, y=0 thì hệ ko thỏa mãn. Thay x=-1, y=-1 hệ cũng k thỏa
\(\Rightarrow\left(x;y\right)\ne\left(0;0\right),xy\ne0,x+1\ne0,y+1\ne0\Rightarrow6-xy\ne0\) (*)
Chí từng vế của 1 pt cho nhau:
\(\Rightarrow\dfrac{x}{y}=\dfrac{-6-xy}{6-xy}\Leftrightarrow xy\left(x-y\right)=6\left(x+y\right)\)
Thay x=y thì hpt có vế phải = nhau, vế trái khác nhau => x-y\(\ne0\) (**)
\(\Rightarrow xy=\dfrac{6\left(x+y\right)}{x-y}\left(3\right)\)
Cộng từng vế (1) và (2) của hệ ta đc pt: \(2\left(x+y\right)\left(x+1\right)\left(y+1\right)+2xy=0\left(4\right)\)
\(\Leftrightarrow\left(x+y\right)\left(x+y+xy+1\right)+xy=0\)
\(\Leftrightarrow\left(x+y\right)\left(x+y+1+\dfrac{6\left(x+y\right)}{x-y}+\dfrac{6\left(x+y\right)}{x-y}\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(x+y+1+\dfrac{6\left(x+y+1\right)}{x-y}\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(x+y+1\right)\left(1+\dfrac{6}{x-y}\right)=0\Leftrightarrow\left[{}\begin{matrix}x+y=0\\x+y+1=0\\1+\dfrac{6}{x-y}=0\end{matrix}\right.\)
- Với \(x+y=0\Leftrightarrow x=-y\)
Thế vào hệ \(\Rightarrow-2y^2=0\Leftrightarrow y=0,x=O\) (ko thỏa *)
- Với \(x+y+1=0\Leftrightarrow x=-y-1\). Thế vào pt (1) của hệ ta đc:
\(2y^3+3y^2+y+6=0\Leftrightarrow\left(y+2\right)\left(2y^2-y+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y+2=0\Leftrightarrow y=-2\\2y^2-y+3=0\left(VN\right)\end{matrix}\right.\)
- Với y=-2 => x=1. Thế vào thì hệ thỏa, vậy có nghiệm(x;y)=(1;-2)
- Với \(1+\dfrac{6}{x-y}=0\Leftrightarrow x-y+6=0\Leftrightarrow x=y-6\)
Thế x=y-6 vào pt (2) của hệ:
\(\left(2\right)\Leftrightarrow2y^3-7y^2-16y-6=0\Leftrightarrow\left(2y+1\right)\left(y^2-4y-6\right)=0\Leftrightarrow\left[{}\begin{matrix}2y+1=0\\y^2-4y-6=0\end{matrix}\right.\)
\(y^2-4y-6=0\Leftrightarrow\left[{}\begin{matrix}y_1=2+\sqrt{10}\\y_2=2-\sqrt{10}\end{matrix}\right.\)
\(2y+1=0\Leftrightarrow y_3=-\dfrac{1}{2}\)
..................